



# **USER MANUAL**

# Z-GPRS3 Z-UMTS Z-LOGGER3

Multi-protocol Datalogger, RTU, with ethernet, modem 2G/3G, GNSS and embedded I/O

### SENECA s.r.l.

Via Austria 26, PADOVA - ITALY

Tel. +39.049.8705355 - 8705359 Fax. +39.049.8706287

Web site: www.seneca.it



Customer service: <a href="mailto:support@seneca.it">support@seneca.it</a> (IT), <a href="mai

(Other)

Commercial information: <a href="mailto:commerciale@seneca.it">commerciale@seneca.it</a> (IT), <a href="mailto:sales@seneca.it">sales@seneca.it</a>

(Otner)

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

MI004460\_114\_EN

| Date       | Version | Changes                                                                                                               |
|------------|---------|-----------------------------------------------------------------------------------------------------------------------|
| 01/02/2017 | 1.07    | Fixed lower Supply voltage limit for Z-UMTS product                                                                   |
| 20/04/2017 | 1.08    | Added Revision FW Registers                                                                                           |
|            |         | Fix DOUT2 Commands (Supported commands from Modbus)                                                                   |
|            |         | Added new "Emergency Mode" function (from firmware 1.2.1 Z-UMTS, 2.4.2                                                |
|            |         | Z-GPRS3/Z-LOGGER3)                                                                                                    |
| 11/05/2017 | 1.09    | Added info about Internal Flash log Size                                                                              |
| 29/06/2017 | 1.10    | Changed reference to Chrome browser                                                                                   |
|            |         | Changed default IP address from 192.168.90.101 to 192.168.1.101                                                       |
|            |         | Added Chapter Z-GPRS3 consumption estimate for use with solar panels                                                  |
| 06/07/2017 | 1.11    | Fixed Modbus command value for "DOWNLOAD AND UPDATE PHONEBOOK FROM FTP SERVER"                                        |
| 28/02/2018 | 1.12    | Added new firmware 2.5 and 1.5 features: MQTT Protocol, DDNS, Modbus TCP-IP to RTU Passthroug, Syslog Client, Unicode |
|            |         | Added SMS command info for update FW/Setup                                                                            |
| 18/09/2018 | 1.13    | Added Z-UMTS HW2 device                                                                                               |
| 17/12/2018 | 1.14    | Changed Z-UMTS HW2 Modbus Addresses for HW1 compatibility from firmware 3.0.3                                         |
|            |         |                                                                                                                       |
|            |         |                                                                                                                       |

# **Table of Contents**

| SEI   | NECA Z-GPRS3, Z-UMTS, Z-LOGGER3                    | 7  |
|-------|----------------------------------------------------|----|
| PRI   | ELIMINARY INFORMATION                              | 7  |
| 1.    | CHARACTERISTICS                                    | 9  |
| 1.1.  | RTU Models characteristics                         | 9  |
| 1.2.  | Digital Inputs                                     | 11 |
| 1.3.  | Digital outputs                                    | 11 |
| 1.4.  | Analog Inputs                                      | 11 |
| 1.5.  | GNSS (ONLY Z-UMTS HW2)                             | 12 |
| 1.6.  | Communication Ports                                | 12 |
| 1.7.  | Storage units                                      | 12 |
| 1.8.  | Power supply                                       | 12 |
| 1.9.  | Regulations                                        | 13 |
| 1.10  | O. Case specifications                             | 13 |
| 1.11. | 1. Insulation                                      | 14 |
| 2.    | CONNECTIONS                                        | 15 |
| 2.1.  | Power supply connections                           | 15 |
| 2.2.  | Analog input connections                           | 15 |
| 2.3.  | Auxiliary voltage connections                      | 15 |
| 2.4.  | Serial communication RS485/RS232 ports connections | 16 |
| 2.5.  | Digital outputs connections                        | 16 |
| 2.6.  | Digital inputs connections                         | 17 |

| 3.    | SIGNAL LEDS                                                                    | 18 |
|-------|--------------------------------------------------------------------------------|----|
| 3.1.  | Z-GPRS3 leds                                                                   | 18 |
| 3.2.  | Z-UMTS leds                                                                    | 19 |
| 3.3.  | Z-UMTS HW2 leds                                                                | 19 |
| 3.4.  | Z-LOGGER3 leds                                                                 | 21 |
| 4.    | DEVICES OVERVIEW                                                               | 22 |
| 5.    | SWITCH ON, AND SWITCH OFF THE RTU                                              | 23 |
| 6.    | SUPPORTED SIM CARDS (ONLY Z-GPRS3 / Z-UMTS)                                    | 24 |
| 7.    | GSM SIGNAL (ONLY Z-GPRS3 / Z-UMTS)                                             | 25 |
| 8.    | INTERNAL UPS                                                                   | 26 |
| 9.    | ADDRESS BOOK                                                                   | 27 |
| 9.1.  | SENDING A SMS COMMAND USING THE PASSWORD (ONLY Z-GPRS3 / Z-UMTS)               | 28 |
| 9.2.  | MICROSD CARD PHONE BOOK (ONLY Z-GPRS3 / Z-UMTS)                                | 28 |
| 10.   | ACQUIRING AND SENDING LOG DATA                                                 | 29 |
| 10.1. | . THE EVENT LOGGER                                                             | 29 |
| 10    | 0.1.1. Sending event logger file to an FTP server                              | 30 |
| 10    | 0.1.2. Sending event logger file to an EMAIL server                            | 31 |
| 10    | 0.1.3. Saving event logger file to the microSD card                            | 33 |
| 10.2. | . THE DATA LOGGER AND THE DATA LOGGER ON TRIGGER                               | 33 |
| 10    | 0.2.1. Sending data logger file to a FTP server                                |    |
| 10    | 0.2.2. Sending data logger and data logger on trigger data to an E-MAIL server |    |
| 10    | 0.2.1. Sending data logger and data logger on trigger data to an HTTP server   |    |
| 10    | 0.2.1. Saving data logger data to the microSD card                             |    |
| 11.   | SENDING DATA TO AN MQTT BROKER                                                 | 38 |
| 13.   | ACTIONS AND MESSAGES                                                           | 39 |
| 13.1. | . ACTIONS                                                                      | 40 |
| 13.2. | . TEXT AND AUDIO MESSAGES                                                      | 40 |

| 14.   | SENDING AUDIO (DTMF) COMMANDS TO Z-GPRS3 AND Z-UMTS       | 40 |
|-------|-----------------------------------------------------------|----|
| 15.   | THE WEBSERVER                                             | 41 |
| 15.1. | MAINTENANCE WEBSERVER                                     | 41 |
| 15.2. | CUSTOM WEBSERVER                                          | 43 |
| 16.   | SEAL (SENECA ADVANCED LANGUAGE)                           | 44 |
| 17.   | FIRMWARE UPDATE                                           | 45 |
| 17.1. | Firmware update by Webserver                              | 45 |
| 17.2. | Firmware update by microSD card                           | 46 |
| 18.   | SEAL PROGRAM AND SEAL CONFIGURATION REMOTE UPDATE         | 46 |
| 18.1. | SEAL PROGRAM AND SEAL CONFIGURATION UPDATE FROM WEBSERVER | 46 |
| 18.2. | UPLOAD A PROJECT BACKUP TO THE RTU                        | 47 |
| 19.   | MODBUS TCP-IP SERVER AND MODBUS RTU SLAVE                 | 48 |
| 19.1. | MODBUS ADDRESSES TABLE (Z-GPRS3/Z-LOGGER3/Z-UMTS)         | 49 |
| 19.2. | MODBUS ADDRESSES TABLE (Z-UMTS HW2 from firmware 3.0.3)   | 52 |
| 19.3. | SUPPORTED COMMANDS FROM MODBUS                            | 55 |
| 20.   | MODBUS TCP-IP TO RTU PASSTHROUGH                          | 57 |
| 21.   | DYNAMIC DNS (Z-GPRS3 AND Z-UMTS ONLY)                     | 57 |
| 22.   | SUPPORTED SMS COMMANDS (Z-GPRS3 AND Z-UMTS ONLY)          | 58 |
| 22.1. | List of Supported Sms Commands                            | 58 |
| 23.   | EMERGENCY MODE                                            | 65 |
| 24.   | Z-GPRS3 POWER ESTIMATE FOR USE WITH SOLAR PANELS          | 65 |
| 25.   | TROUBLESHOOTING                                           | 66 |

| USER MANUAL – Z-GPRS3, Z-UMTS, Z-LOGGER3 |  |
|------------------------------------------|--|
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |

# Seneca Z-GPRS3, Z-UMTS, Z-LOGGER3

### PRELIMINARY INFORMATION

### **CAUTION!**

Contact your telephone provider for information on GSM and GPRS service costs. It is best to quantify log and SMS costs before setting up and installing Z-GPRS3, Z-UMTS OR Z-LOGGER3.

The use of Z-GPRS3 and Z-UMTS in data roaming (for example, abroad with an Italian SIM card) may generate unexpected costs. Contact your telephone provider for further information.

IN NO CASE MAY SENECA OR ITS SUPPLIERS BE HELD LIABLE FOR ANY INCOMING DATA OR PROFIT LOSSES DUE TO INDIRECT, CONSEQUENTIAL OR INCIDENTAL CAUSES (INCLUDING NEGLIGENCE) CONNECTED WITH THE USE OR INABILITY TO USE Z-GPRS3, Z-UMTS OR Z-LOGGER3, EVEN IF SENECA WAS INFORMED OF THE POTENTIAL OF THESE DAMAGES.

SENECA, ITS SUBSIDIARIES OR AFFILIATES OR GROUP PARTNERS OR DISTRIBUTORS AND SENECA DEALERS DO NOT GUARANTEE THAT THE FUNCTIONS FAITHFULLY MEET THE EXPECTATIONS AND THAT Z-GPRS3, Z-UMTS, Z-LOGGER3, THEIR FIRMWARE AND SOFTWARE ARE FREE OF ERRORS OR FUNCTION UNINTERRUPTEDLY.

SENECA HAS TAKEN THE UTMOST CARE AND CAUTION IN DRAFTING THIS MANUAL. HOWEVER, IT MAY CONTAIN ERRORS OR OMISSIONS. SENECA SRL RESERVES THE RIGHT TO MODIFY AND/OR VARY PARTS OF THIS MANUAL TO CORRECT ERRORS OR TO ADJUST TO PRODUCT FEATURE CHANGES WITHOUT ANY PRIOR NOTICE.

### **CAUTION!**

- -Contact your telephone service provider for GSM and GPRS service costs especially when using Z-GPRS3 and Z-UMTS with a sim issued by a country other than the one in which it is used (international roaming).
- -It is best to estimate telephone costs before setting up Z-GPRS3 and Z-UMTS.
- -The cost of each SMS is set by the telephone service provider.
- -Internet send/receive costs can be tied to Kbytes sent/received, a monthly ceiling included in a package or internet connection time. Contact your telephone service provider for further information.

- -For internet connections whose costs is associated with connection time, please remember that communications are active for an amount of time that depends on the number of log rows to be sent. Typically, a 2 Kbyte data log takes about 10-15 seconds (in GPRS mode) to be sent in addition to the time necessary to establish the connection (from 5 to 30 seconds) and the time due to any server login attempts.
- -When use PPP the internet connection is ALWAYS ON
- -Check the data quantity sent via internet and SMS before using Z-GPRS3 and Z-UMTS.

Please remember that mobile phone service providers also consider the entire communication that permits file transmission (and thus data transmission overhead, the number of connection attempts, etc.) and not just the dimensions as data traffic in each transaction.

### 1. CHARACTERISTICS

### 1.1. RTU Models characteristics

- Supply voltage (Z-GPRS3 and Z-LOGGER3) 11..40 Vdc; 19..28 Vac max 6.5 W
   Supply voltage (Z-UMTS) 19..40 Vdc; 19..28 Vac max 6.5 W
- Internal UPS for up to 1h works without external power

• MODEM: Z-Logger3: No modem

Z-GPRS3: GSM/GPRS quad-band 850/900/1800/1900 MHz

DL max: 85.6 Kbps, UL max: 42.8 Kbps Coding scheme CS-1, CS-2, CS-3, CS-4 Class 4 (2W) at GSM 850 and EGSM 900 Class 2 (1W) at DCS 1800 and PCS 1900

GPRS multi slot class 10

Z-UMTS: HSPA+/UMTS dual-band 900/2100 MHz (standard)

HSPA+/UMTS tri-band 850/1900/2100 MHz (optional) GSM/GPRS/EDGE quad-band 850/900/1800/1900 MHz

GPRS: UL 85.6 kbit/s; DL 85.6 kbit/s EDGE: UL 236.8 kbit/s; DL 236.8 kbit/s WCDMA PS: UL 384 kbit/s; DL 384 kbit/s HSPA+: UL 5.76 Mbit/s; DL 21.6 Mbit/s

Z-UMTS HW2: Worldwide UMTS/HSDPA+ and GSM/GPRS/EDGE coverage

800/850/900/1900/2100MHz @UMTS 850/900/1800/1900MHz @GSM HSDPA: Max.14.4Mbps (DL) HSUPA: Max.5.76Mbps (UL)

WCDMA: Max.384Kbps (DL)/Max.384Kbps (UL) EDGE: Max.236.8Kbps (DL)/Max.236.8Kbps (UL) GPRS: Max. 85.6Kbps (DL)/ Max. 85.6Kbps (UL)

- 500 Vac insulation between remaining circuit power
- Quick installation on DIN 46277 guide
- Status indication LED
- NR 4 digital inputs (PNP/NPN programmable)
- NR 2 16-bit voltage/current programmable analog inputs
- NR 2 relay digital outputs
- GNSS receiver (only Z-UMTS HW2): available for applications requiring fast and accurate fixes in any location (GPS and GLONASS)

- 10/100 Mbps frontal Ethernet RJ45
- NR 1 RS232 or RS484 port
- NR 1 RS485 port
- 1 microUSB port for settings
- MicroSD support (microSD or microSDHC max 32 Gb)
- NR4 32 bits max 30 Hz totalizers
- NR4 32 bits max 30 Hz resettable counters
- Possibility of expanding the number of I/O via Modbus TCP-IP or Modbus RTU
- Maximum number of channels on datalogger: 133 (of which 100 via Modbus RTU or Modbus TCP-IP)
- Supported system protocols via GSM: SMS, audio voice calls (also with zero cost command)
- Support for Dynamic DNS
- UNICODE messages supported
- Supported system protocols via 2G/3G or Ethernet: FTP client, SMTP client, ModBUS TCP-IP Server, ModBUS TCP-IP Client, Webserver, HTTP Rest, MQTT
- SYSlog Client
- Passthrough Modbus TCP-IP to Modbus RTU
- Custom Webserver (Web pages in Sd card)
- Protocol on RS485/RS232: Modbus RTU Master/Slave
- Memory expansion up to 32 GigaBytes with micro SD
- 32 bits ARM processor
- Real Time multitasking operating system
- Firmware update via USB / microSD/ Webserver or by remote connection

# 1.2. Digital Inputs

| Channels number     | 4                      |
|---------------------|------------------------|
| Input type          | PNP, NPN configurable. |
| Voltage supply      | 12 Vdc                 |
| Current supply      | 20 mA                  |
|                     |                        |
| Maximum frequency   | 30 Hz                  |
| Current consumption | 3 mA                   |

# 1.3. Digital outputs

| Channels number | 2       |
|-----------------|---------|
| Output type     | Relay   |
| Maximum Voltage | 250 Vac |
| Maximum Current | 2 A     |

# 1.4. Analog Inputs

| Channels number  | 2                              |
|------------------|--------------------------------|
| Input type       | Current / Voltage configurable |
| Voltage input    | 030V accuracy 0,1% FS          |
| Current input    | 020 mA accuracy 0,1% FS        |
| Input protection | yes, 12Vdc or 25mA             |
| Resolution       | 16 bit                         |

# 1.5. GNSS (ONLY Z-UMTS HW2)

| Type/Channels number | Qualcomm gpsOne Gen8   |
|----------------------|------------------------|
|                      | 16 GPS CHANNELS        |
|                      | 14 GLONASS CHANNELS    |
| Accuracy             | <1.5m CEP-50 @Open Sky |

# **1.6. Communication Ports**

| RS 485 #1          | Port #1, on IDC10 connector       |
|--------------------|-----------------------------------|
| RS 485 or RS232 #2 | Port #2, terminals M10/M11/M12    |
| Ethernet           | 10/100 Mbit, RJ45 with autoswitch |
| USB micro B        | Micro B                           |

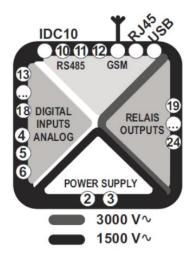
# 1.7. Storage units

| Internal Flash | 8 Mbytes for configuration, datalogger and firmware update                                            |
|----------------|-------------------------------------------------------------------------------------------------------|
| MicroSD        | microSD and microSDHC, max 32 GB<br>(supplied with 4 GBytes* microSD)<br>*= This value can be changed |

# 1.8. Power supply

| Voltage | 1140 Vdc; 1928 Vac (Z-GPRS3 / Z-LOGGER3) |
|---------|------------------------------------------|
|         | 1924 Vdc; 1928 Vac (Z-UMTS)              |

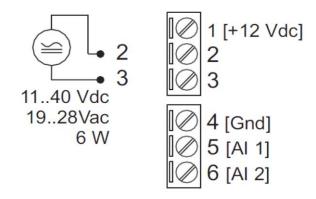
| Power consumption | 6,5 W |
|-------------------|-------|
| Protection rating | IP20  |


# 1.9. Regulations

| EN61000-6-4/2002-10                 | Electromagnetic emission, industrial environment.                        |
|-------------------------------------|--------------------------------------------------------------------------|
| EN61000-6-2/2006-10                 | Electromagnetic immunity, industrial environment.                        |
| EN 301 511 (only Z-GPRS3, Z-UMTS)   | Harmonized standard for mobile stations in the GSM 900 and 1800 bands.   |
| EN 301 489-1 (only Z-GPRS3, Z-UMTS) | ElectroMagnetic Compatibility standard for radio equipment and services. |
| EN 301 489-7 (only Z-GPRS3, Z-UMTS) | Specific (EMC) conditions for mobile radio equipment (GSM 900 and 1800). |
| EN 60950                            | Safety of information Technology Equipment.                              |

# 1.10. Case specifications

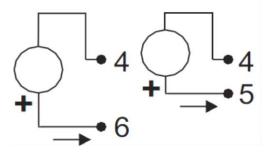
| Dimensions and weight | 100 x 111 x 35 mm, 280 g |
|-----------------------|--------------------------|
| Material              | Black PBT                |


# 1.11. Insulation



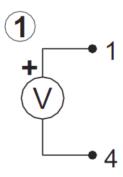
### 2. CONNECTIONS

### 2.1. Power supply connections


You can supply DC or AC power to terminals 2-3, in the case of DC power supply is not necessary to distinguish between the "+" from the "-" cable:



### 2.2. Analog input connections


The analog input 1 voltage / current is connected to terminal 4 (- sign for the voltage, the current exit) and 6 (+ sign to the voltage, the current incoming).

The analog input 2 voltage / current is connected to terminal 4 (- sign for the voltage, the current exit) and 5 (+ sign to the voltage, the current incoming).



### 2.3. Auxiliary voltage connections

The device can provide from 12 to 15 VDC (max 40mA) to an external sensor connected to terminals 1 (+) and 4 (-):



### 2.4. Serial communication RS485/RS232 ports connections

The RS485 port # 1 is connected to the bottom connector "IDC10" for connecting to the Z-BUS Seneca.

The Serial #2 port is connected to terminal 10-11-12, can be configured in RS232 or RS485 mode.

SW2 = ON Configure PORT#2 as RS232

SW2 = OFF Configure PORT#2 as RS485

10 \\[ \] 11 \\[ \] 12 \\[ \] \[ \]

10 = RS485#2 GND / RS232 GND

11 = RS485#2 A / RS232 RX

12 = RS485#2 B / RS232 TX

### 2.5. Digital outputs connections

The output relay is connected between terminals 19-20-21:



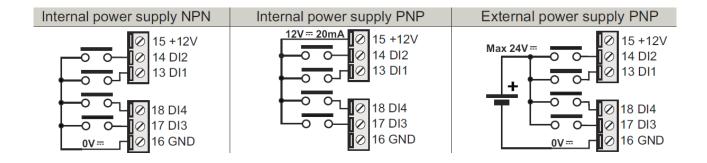
19 = Normally open relay #1

21 = Shared relay #1

22 = Normally close relay #1

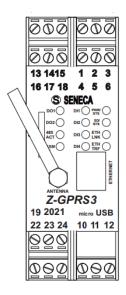


22 = Normally open relay #2


23 = Shared relay #2

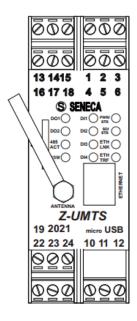
24 = Normally close relay #2

### 2.6. Digital inputs connections


It's possible to provide power to an external sensor by terminals 15-16 (max 40mA).

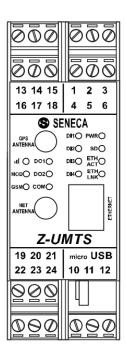
The inputs can be configured in NPN or PNP mode, see below:




### 3. SIGNAL LEDS

### 3.1. Z-GPRS3 leds



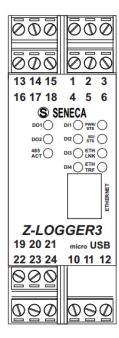

| LED     | Color  | Status                          | LEDs Meaning                                         |
|---------|--------|---------------------------------|------------------------------------------------------|
| DO1 Red |        | ON                              | Digital output 1, relay energized                    |
| 501     | 1100   | OFF                             | Digital output 1, relay de-energized                 |
| DO2     | Red    | ON                              | Digital output 2, relay energized                    |
|         |        | OFF                             | Digital output 2, relay de-energized                 |
| 485 ACT | Green  | Slow blinking                   |                                                      |
|         |        | 2.8 sec ON ■                    | RS485 activity or RS232 activity                     |
|         |        | 0.4 sec OFF  OFF                | RS485 or RS232 serial interface not used             |
|         |        | Fast blinking                   | R5465 of R5232 senai interace not used               |
|         |        | 0.2 sec ON ■                    |                                                      |
|         |        | 0.2 sec OFF                     | Timeout on RS485 or RS232 communication              |
|         |        | OFF 🗆                           | Modem GPRS OFF                                       |
| GSM     | Yellow | Slow blinking                   | Connected to the GSM network                         |
| GSM     | Tellow | Medium blinking                 | Searching the GSM or GPRS network                    |
|         |        | Fast blinking                   | Connected to the GPRS network                        |
|         |        | ON (NPN)                        | Digital Input 1: Energized (closed contact to GND)   |
| DI1     | Red    | ON (PNP)                        | Digital Input 1: Energized (closed contact to +12V)  |
|         |        | OFF                             | Digital Input 1: De-energized (open contact)         |
|         |        | ON (NPN)                        | Digital Input 2: Energized (closed contact to GND)   |
| DI2     | Red    | ON (PNP)                        | Digital Input 2: Energized (closed contact to +12V)  |
|         |        | OFF                             | Digital Input 2: De-energized (open contact)         |
|         |        | ON (NPN)                        | Digital Input 3: Energized (closed contact to GND)   |
| DI3     | Red    | ON (PNP)                        | Digital Input 3: Energized (closed contact to +12V)  |
|         |        | OFF                             | Digital Input 3: De-energized (open contact)         |
|         |        | ON (NPN)                        | Digital Input 4: Energized (closed contact to GND)   |
| DI4     | Red    | ON (PNP)                        | Digital Input 4: Energized (closed contact to +12V)  |
|         |        | OFF                             | Digital Input 4: De-energized (open contact)         |
|         |        | ON ■                            | Z-GPRS3 ON inactive log (status=ready)               |
|         |        | OFF 🗆                           | Z-GPRS3 OFF                                          |
|         |        | Slow blinking<br>2.8 sec ON ■   |                                                      |
|         |        | 0.4 sec OFF □                   | Z-GPRS3 active log (status=normal)                   |
|         |        | Slow blinking                   |                                                      |
|         |        | 1.6 sec ON ■                    | Battery powered inactive log (status=battery backup) |
|         | _      | 1.6 sec OFF □                   | Battery powered macrive log (status=battery backup)  |
| PWR/STS | Green  | Medium blinking                 |                                                      |
|         |        | 0.8 sec ON ■<br>0.8 sec OFF □   | Low battery warning                                  |
|         |        | Fast blinking                   |                                                      |
|         |        | 0.2 sec ON ■                    |                                                      |
|         |        | 0.2 sec OFF □                   | Z-GPRS3 initializing or shutdown                     |
|         |        | Fast blinking                   | =D=DDDDD=D=D=DDDDD                                   |
|         |        | 0.2 sec ON ■                    | Error, please refer to the diagnostic                |
|         |        | 0.2 sec OFF □                   |                                                      |
|         |        | ON ■                            | SD card mounted in the right way                     |
|         |        | OFF   Medium blinking           | SD card not present                                  |
|         | Red    | Medium blinking<br>0.8 sec ON ■ |                                                      |
| SD/STS  |        | 0.8 sec OFF □                   | SD card activity                                     |
|         |        | Fast blinking                   |                                                      |
|         |        | 0.2 sec ON ■                    |                                                      |
|         |        | 0.2 sec OFF □                   | SD card error                                        |
| ETH LNK | Green  | Blinking                        | RJ45 connection activated                            |
| ETH TRF | Yellow | Blinking                        | Traffic on Ethernet port                             |

### 3.2. Z-UMTS leds



| LED SIG             | NALING ON FRONT                           | PANEL                                                |  |
|---------------------|-------------------------------------------|------------------------------------------------------|--|
| LED                 | Status                                    | LED's meaning                                        |  |
|                     | ON (NPN)                                  | Digital Input 1: Energized (GND closed contact)      |  |
| DI1<br>(Red)        | ON (PNP)                                  | Digital Input 1: Energized (+12V closed contact)     |  |
| (Iteu)              | OFF                                       | Digital Input 1: De-energized (open contact)         |  |
|                     | ON (NPN)                                  | Digital Input 2: Energized (GND closed contact)      |  |
| DI2<br>(Red)        | ON (PNP)                                  | Digital Input 2: Energized (+12V closed contact)     |  |
| (Neu)               | OFF                                       | Digital Input 2: De-energized (open contact)         |  |
|                     | ON (NPN)                                  | Digital Input 3: Energized (GND closed contact)      |  |
| DI3<br>(Red)        | ON (PNP)                                  | Digital Input 3: Energized (+12V closed contact)     |  |
| (Neu)               | OFF                                       | Digital Input 3: De-energized (open contact)         |  |
|                     | ON (NPN)                                  | Digital Input 4: Energized (GND closed contact)      |  |
| DI4<br>(Red)        | ON (PNP)                                  | Digital Input 4: Energized (+12V closed contact)     |  |
| (Neu)               | OFF                                       | Digital Input 4: De-energized (open contact)         |  |
| ON ■                | ON ■                                      | Z-UMTS ON inactive log (status=ready)                |  |
|                     | Slow Blinking<br>2.8 sec ON 0.4 sec OFF   | Z-UMTS active log (status=normal)                    |  |
|                     | Slow Blinking<br>1.6 sec ON 1.6 sec OFF   | Battery powered inactive log (status=battery backup) |  |
| PWR/STS<br>(Green)  | Medium Blinking<br>0.8 sec ON 0.8 sec OFF | Low battery warning                                  |  |
|                     | Fast Blinking<br>0.2 sec ON 0.2 sec OFF   | Z-UMTS initializing or shutdown                      |  |
|                     | Fast Blinking                             | ■□■□□□□□□□□□□□□                                      |  |
|                     | 0.6 sec ■□■ 1 sec OFF                     | Error, please refer to the diagnostic                |  |
|                     | OFF 🗆                                     | Z-UMTS OFF                                           |  |
|                     | ON ■                                      | SD card mounted in the right way                     |  |
| SD/STS              | Medium Blinking<br>0.8 sec ON 0.8 sec OFF | SD card activity                                     |  |
| (Red)               | Fast Blinking<br>0.2 sec ON 0.2 sec OFF   | SD card error                                        |  |
|                     | OFF 🗆                                     | SD card not present                                  |  |
| ETH LNK<br>(Green)  | Blinking                                  | RJ45 connection activated                            |  |
| ETH TRF<br>(Yellow) | Blinking                                  | Traffic on Ethernet port                             |  |

### 3.3. Z-UMTS HW2 leds




| LED                   | Status                                    | LED's meaning                                       |  |
|-----------------------|-------------------------------------------|-----------------------------------------------------|--|
| DO1 ON                |                                           | Digital output 1, relay energized                   |  |
| (Red)                 | OFF                                       | Digital output 1, relay de-energized                |  |
| DO2                   | ON                                        | Digital output 2, relay energized                   |  |
| (Red)                 | OFF                                       | Digital output 2, relay de-energized                |  |
|                       | Slow Blinking<br>2.8s ON ■ 0.4s OFF □     | RS485 or RS232 serial interface activity            |  |
| COM<br>(Red)          | OFF                                       | RS485 or RS232 serial interface not used            |  |
| (Reu)                 | Fast Blinking<br>0.2s ON ■ 0.2s OFF□      | RS485 or RS232 communication Timeout                |  |
|                       | ON (NPN)                                  | Digital input 1: Energized (Contact closed to GND)  |  |
| D <b>I</b> 1<br>(Red) | ON (PNP)                                  | Digital input 1: Energized (Contact closed to +12V) |  |
| (Neu)                 | OFF                                       | Digital input 1: De-energized (Open contact)        |  |
|                       | ON (NPN)                                  | Digital input 2: Energized (Contact closed to GND)  |  |
| DI2<br>(Red)          | ON (PNP)                                  | Digital input 2: Energized (Contact closed to +12V) |  |
| (Neu)                 | OFF                                       | Digital input 2: De-energized (Open contact)        |  |
| D.10                  | ON (NPN)                                  | Digital input 3: Energized (Contact closed to GND)  |  |
| D <b>I</b> 3<br>(Red) | ON (PNP)                                  | Digital input 3: Energized (Contact closed to +12V) |  |
| (Nou)                 | OFF                                       | Digital input 3: De-energized (Open contact)        |  |
|                       | ON (NPN)                                  | Digital input 4: Energized (Contact closed to GND)  |  |
| D <b>I</b> 4<br>(Red) | ON (PNP)                                  | Digital input 4: Energized (Contact closed to +12V) |  |
| (INCU)                | OFF                                       | Digital input 4: De-energized (Open contact)        |  |
|                       | ON                                        | Z-UMTS ON inactive log (status=ready)               |  |
|                       | Slow Blinking<br>2.8 sec ON 0.4 sec OFF   | Z-UMTS active log (status=normal)                   |  |
|                       | Slow Blinking<br>1.6 sec ON 1.6 sec OFF   | Battery powered (status=battery backup)             |  |
| PWR<br>(Green)        | Medium Blinking<br>0.8 sec ON 0.8 sec OFF | Low battery warning                                 |  |
|                       | Fast Blinking<br>0.2 sec ON 0.2 sec OFF   | Z-UMTS initializing or shutdown                     |  |
|                       | Fast Blinking<br>0.6 sec ■□■ 1 sec OFF    | Error, please refer to the webserver diagnostic     |  |
|                       | OFF                                       | Z-UMTS OFF                                          |  |

| LED                | Status                           | LED's meaning                                   |  |  |
|--------------------|----------------------------------|-------------------------------------------------|--|--|
|                    | ON ■                             | GSM level 4 ■■■■■■■ (maximum signal)            |  |  |
| GSM                | Dlinking                         | GSM level 3 □■□■□■□□ 3 Flashes (good)           |  |  |
| LEVEL              | Blinking<br>0.3s ON ■ 0.3s OFF □ | GSM level 2 □■□■□□□□ 2 Flashes (medium)         |  |  |
| (Green)            | 0,03 014 = 0.03 011 🗖            | GSM level 1 □■□□□□□□ 1 Flash (low)              |  |  |
| ( /                | OFF                              | GSM level 0                                     |  |  |
| MOD                | ON ■                             | Registered in 3G network                        |  |  |
| (Yellow)           | OFF 🗆                            | Others                                          |  |  |
|                    | Slow Blinking                    |                                                 |  |  |
|                    | 0,2s ON ■ 1,8s OFF □             | (200ms High/1800ms Low) Network searching       |  |  |
| GSM                | Slow Blinking                    |                                                 |  |  |
| STATUS<br>(Yellow) | 1,8s ON ■ 0,2s OFF □             | (1800ms High/200ms Low) Idle                    |  |  |
|                    | Fast Blinking                    |                                                 |  |  |
|                    | 0,125s ON ■ 0,125s □ OFF         | (125ms High/125ms Low) Data transfer is ongoing |  |  |
|                    | ON ■                             | Voice calling                                   |  |  |

| LED                 | Status                                    | LED's meaning                    |
|---------------------|-------------------------------------------|----------------------------------|
| SD<br>(Red)         | ON                                        | SD card mounted in the right way |
|                     | Medium Blinking<br>0.8 sec ON 0.8 sec OFF | SD card activity                 |
|                     | Fast Blinking<br>0.2 sec ON 0.2 sec OFF   | SD card error                    |
|                     | OFF                                       | SD card not present              |
| ETH LNK<br>(Green)  | Blinking                                  | RJ45 connection activated        |
| ETH ACT<br>(Yellow) | B <b>l</b> inking                         | Traffic on Ethernet port         |

### 3.4. Z-LOGGER3 leds



| LED SIGNALING ON FRONT PANEL |                      |                                          |  |
|------------------------------|----------------------|------------------------------------------|--|
| LED                          | Status               | LED's meaning                            |  |
| DO1                          | ON                   | Digital output 1, relay energized        |  |
| (Red)                        | OFF                  | Digital output 1, relay de-energized     |  |
| DO2                          | ON                   | Digital output 2, relay energized        |  |
| (Red)                        | OFF                  | Digital output 2, relay de-energized     |  |
|                              | Slow Blinking        |                                          |  |
| 485 ACT                      | 2.8s ON ■ 0.4s OFF □ | RS485 activity or RS232 activity         |  |
| (Green)                      | OFF□                 | RS485 or RS232 serial interface not used |  |
|                              | Fast Blinking        |                                          |  |
|                              | 0.2s ON ■ 0.2s OFF□  | RS485 or RS232 communication Timeout     |  |

| LED                 | Status                                    | LED's meaning                                        |  |  |
|---------------------|-------------------------------------------|------------------------------------------------------|--|--|
| 514                 | ON (NPN)                                  | Digital Input 1: Energized (GND closed contact)      |  |  |
| DI1<br>(Red)        | ON (PNP)                                  | Digital Input 1: Energized (+12V closed contact)     |  |  |
| (rtou)              | OFF                                       | Digital Input 1: De-energized (open contact)         |  |  |
|                     | ON (NPN)                                  | Digital Input 2: Energized (GND closed contact)      |  |  |
| DI2<br>(Red)        | ON (PNP)                                  | Digital Input 2: Energized (+12V closed contact)     |  |  |
| (rtcu)              | OFF                                       | Digital Input 2: De-energized (open contact)         |  |  |
|                     | ON (NPN)                                  | Digital Input 3: Energized (GND closed contact)      |  |  |
| DI3<br>(Red)        | ON (PNP)                                  | Digital Input 3: Energized (+12V closed contact)     |  |  |
| (Neu)               | OFF                                       | Digital Input 3: De-energized (open contact)         |  |  |
|                     | ON (NPN)                                  | Digital Input 4: Energized (GND closed contact)      |  |  |
| DI4<br>(Red)        | ON (PNP)                                  | Digital Input 4: Energized (+12V closed contact)     |  |  |
| (Iteu)              | OFF                                       | Digital Input 4: De-energized (open contact)         |  |  |
|                     | ON ■                                      | Z-LOGGER3 ON inactive log (status=ready)             |  |  |
|                     | Slow Blinking<br>2.8 sec ON 0.4 sec OFF   | Z-LOGGER3 active log (status=normal)                 |  |  |
|                     | Slow Blinking<br>1.6 sec ON 1.6 sec OFF   | Battery powered inactive log (status=battery backup) |  |  |
| PWR/STS<br>(Green)  | Medium Blinking<br>0.8 sec ON 0.8 sec OFF | Low battery warning                                  |  |  |
|                     | Fast Blinking<br>0.2 sec ON 0.2 sec OFF   | Z-LOGGER3 initializing or shutdown                   |  |  |
|                     | Fast Blinking<br>0.6 sec ■□■ 1 sec OFF    | Error, please refer to the diagnostic                |  |  |
|                     | OFF 🗆                                     | Z-LOGGER3 OFF                                        |  |  |
|                     | ON ■                                      | SD card mounted in the right way                     |  |  |
| SD/STS              | Medium Blinking<br>0.8 sec ON 0.8 sec OFF | SD card activity                                     |  |  |
| (Red)               | Fast Blinking<br>0.2 sec ON 0.2 sec OFF   | SD card error                                        |  |  |
|                     | OFF 🗆                                     | SD card not present                                  |  |  |
| ETH LNK<br>(Green)  | Blinking                                  | RJ45 connection activated                            |  |  |
| ETH TRF<br>(Yellow) | Blinking                                  | Traffic on Ethernet port                             |  |  |

### 4. DEVICES OVERVIEW

Z-GPRS3, Z-LOGGER3, Z-UMTS are equipped with 4 counters and 4 totalizers. Up to a maximum of 30 Hz signals can be acquired, 4 digital inputs, 2 analog inputs and 2 relay digital outputs.

Z-UMTS HW2 is also equipped with a GNSS (GPS + GLONASS) positional system.

A maximum of 100 External TAGs (Modbus RTU and/or Modbus TCP) plus the internal TAGs (Embedded IO and signals) can be logged.

The logs are sent in csv format (comma separated values, microsoft excel™ compatible) via ftp, email or microSD card.

Http REST functions or MQTT protocols can also be used for send logs, alarms and send/receive commands.

Z-GPRS3 and Z-UMTS can also send the last row of the log file via SMS.

An internal UPS is also available, in UPS mode the RTUs will works for about 1h without external power.

All configurations are possible via the SEAL software, available for free download at www.seneca.it in the Z-GPRS3 or Z-UMTS or Z-LOGGER3 section.

SEAL is a graphical environment that allow you to configure the datalogger and to create simple automation without knowing any programming language.

For more info refers to the SEAL help, SEAL is available for free download at address:

http://www.seneca.it/en/linee-di-prodotto/software/seal/

Others manuals, quickstart and examples on SEAL are availables on the Z-UMTS/Z-GPRS3/Z-LOGGER3 sections on website.

### 5. SWITCH ON, AND SWITCH OFF THE RTU

RTUs are equipped with back-up batteries (internal UPS) to perform programmable actions in case of blackout.

### Switch ON:

- 1) Supply power to the RTU via screw terminal or via BUS IDC10
- 2) The Board will boot-up (led PWR will flash)

### Switch OFF:

- 1) Unplug the Power supply (from terminal or from BUS IDC10)
- 2) The board is powered by internal UPS
- 3) Press the button PS1 until the led PWR will flash fast.

4) Release the button, the board will power off.

# 6. SUPPORTED SIM CARDS (ONLY Z-GPRS3 / Z-UMTS)

Z-GPRS3 and Z-UTMS support the following types of SIM CARDS:

Top-up voice SIM CARD

Subscription voice SIM CARD

Data transmission only SIM CARD

"Zero cost" operations can be run only on voice type SIM CARDS, if the RTU receive a ring an action can be made.

For "top-up" SIM CARDS RTU can manage residual credit requesting the amount from the telephone service provider.

### **CAUTION!**

- -Before inserting the SIM CARD, CANCEL ALL MESSAGES ON THE CARD USING A MOBILE PHONE.
- -Before inserting the SIM CARD, CANCEL ALL ADDRESS BOOK CONTACTS ON THE CARD USING A MOBILE PHONE.
- -UMTS SIM CARDS are supported only by the Z-UMTS product.
- -The Product was tested with leading international provider SIM CARDS. However, operations are not guaranteed with all providers.

### 7. GSM SIGNAL (ONLY Z-GPRS3 / Z-UMTS)

The GSM signal level can be found via SEAL software (in the "test" section) or in the Webserver.

To view the GSM signal level, the SIM CARD must be inserted (signal may change radically based on the selected provider).

Into the log fileThe field is expressed in DBm where -115 dBm it's the minimum, -52 dBm it's the maximum.

This table can be used:

| GSM Signal  | GSM signal [dBm] |
|-------------|------------------|
| 0 (MINIMUM) | -115             |
| 1           | -106             |
| 2           | -97              |
| 3           | -88              |
| 4           | -79              |
| 5           | -70              |
| 6           | -61              |
| 7 (MAXIMUM) | -52              |

Where 0 it's the minimum, and 7 it's maximum.

For correct ftp or email log operations the minimum required field level is 2/7 (please remember that the signal often fluctuates).

For SMS operations only the minimum required field level is 2/7.

Refer to the following table for signal values:

SIGNAL LEVEL 0 = NO SIGNAL (INSUFFICIENT)

SIGNAL LEVEL 1 = INSUFFICIENT SIGNAL (NOT RELIABLE FOR SMS AND GPRS)

SIGNAL LEVEL 2 = MINIMUM SIGNAL (MINIMUM SIGNAL FOR SMS AND GPRS)

SIGNAL LEVEL 3 = RELIABLE SIGNAL (RELIABLE FOR SMS AND GPRS)

SIGNAL LEVEL 4 = GOOD SIGNAL

SIGNAL LEVEL 5 = VERY GOOD SIGNAL

SIGNAL LEVEL 6 = OPTIMAL SIGNAL

### SIGNAL LEVEL 7 = EXCELLENT SIGNAL

To increase the GSM signal level, Seneca provides various GSM antenna models to reach the minimum signal level in most situations.

Visit www.seneca.it, refer to the general catalogue or contact Seneca srl for further information.

### **CAUTION!**

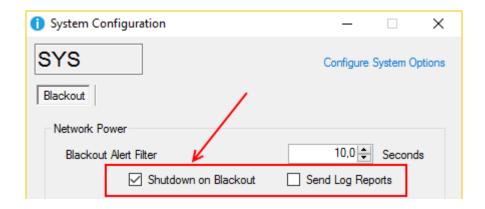
- -Insert the SIM card only with RTU off.
- -Before inserting the SIM card, delete all SMS on the SIM using a mobile phone
- -Wait at least 5 minutes in order for the GSM signal to be correctly read.

### **CAUTION!**

-Contact your telephone service provider for GSM and GPRS service costs especially when using the RTU with a sim issued by a country other than the one in which it is used (international roaming).

### 8. INTERNAL UPS

The RTUs are equipped with rechargeable battery.


In the event of a blackout the board can be configured for:

A) Will work for up to 1h without external power.

When the voltage batteries is insufficient the RTU will runs the following algorithm:

- 1) Ends sending data
- 2) Closes all files opened on microSD
- 3) Turned off
- B) Will shutdown without external power.
- C) Without external power the board will send log data and then shutdown

In SEAL this behavior can be changed in System Configuration  $\frac{\xi}{\delta}$  SYS :



### **CAUTION!**

RTUs ARE SUPPLIED WITHOUT CHARGED BATTERIES.

CHARGE THE BATTERIES BY POWER UP RTUS FOR AT LEAST 48H BEFORE USE

### **CAUTION!**

THE BATTERIES CAN BE RECHARGED FOR A MAXIMUM OF ABOUT 300 TIMES.

### **CAUTION!**

TO CONSERVE BATTERY, IN CASE OF DAILY BACKUP, USE THE CONFIGURATION WITH POWER-OFF WHEN BACKUP

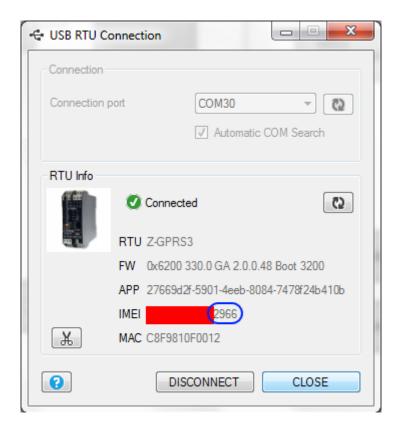
### 9. ADDRESS BOOK

For security reason Z-GPRS3 and Z-UMTS accept SMS command or audio call only from numbers that are in the Address Book.

The address book is composed of a maximum of 8 telephone numbers / emails.

Groups of numbers/emails can be used for sending alarms/logs to a restrict number of users.

For more info refers to the SEAL Help on line.


### 9.1. SENDING A SMS COMMAND USING THE PASSWORD (ONLY Z-GPRS3 / Z-UMTS)

A SMS command can be accepted also if the telephone number isn't in the address book.

For obtain this feature you must insert before the SMS command a password.

The password is different for every RTUs and is obtained from the last 4 digits of the modem IMEI.

For obatin the password you must connect the RTU with SEAL:



So sending the SMS command:

"2966 NET"

The RTU will respond also if the telephone number isn't in the address book.

### 9.2. MICROSD CARD PHONE BOOK (ONLY Z-GPRS3 / Z-UMTS)

It's possible to expand the internal phone book using a file in the microSD card.

You can add a maximum of 1000 telephone number but this numbers are enabled only to send a ring (and so execute a ring command).

For editing the MicroSD card phone book refers to the SEAL Help on line.

## 10. ACQUIRING AND SENDING LOG DATA

When the logger is activated the RTU save data into an internal Flash, then can send it to email server, ftp server, http server or MicroSD card.

When the internal Flash space is full the oldest data will be overwritten (circular buffer).

The files are in standard csv text format (windows excel <sup>™</sup> compatible).

There are 3 types of logs:

### The Event Logger, The Data logger and the Data logger on Trigger

The internal flash stores at maximum of 8192 rows for the Event Logger, a new row will overwrite the oldest (circular buffer).

The number of rows that the Data Logger can store in the internal flash depends from the TAGs size (16, 32 or 64 bits) and the number of tags.

Activating all the embedded tags the maximum number of rows that can be stored in the internal flash is 16384, a new row will overwrite the oldest (circular buffer).

Activating all the embedded tags and all 100 Extended Tags at 32bit the maximum number of rows that can be stored in the internal flash is 16384/8=2048, a new row will overwrite the oldest (circular buffer).

### 10.1. THE EVENT LOGGER

The event logger works defining Events (Digital input/output Events, Blackout, Analog Alarms etc...) with the SEAL software configuration.

When an event is created a new row text (with the Timestamp) is inserted into the log, the event must be configured with the SEAL software.

The event logger can be sent a minimum of 1 time for day if files are sent to FTP, E-MAIL or microSD card.

### **NOTE:**

### If no events are generated, the Event logger file will be composed of only 1 row with the text:

| INDEX | LEVEL | TIMESTAMP        | SOURCE | MESSAGE         |
|-------|-------|------------------|--------|-----------------|
| 140   | INFO  | 06/06/2016 00:00 | SYS    | OK: No Messages |

### 10.1.1. Sending event logger file to an FTP server

The RTUs are compatible with ftp server configured into passive mode.

If the connection with the server is lost the RTU will accumulate the data and when the connection returns all data is sent up to align to actual acquisition.

An event log can include also the diagnostic, for example:

| INDEX | LEVEL | TIMESTAMP        | SOURCE | MESSAGE           |
|-------|-------|------------------|--------|-------------------|
| 119   | ERR   | 01/06/2016 14:11 | SYS    | FTP Connect Error |
| 120   | ERR   | 01/06/2016 20:34 | PRT1   | Bus Disconnected  |
| 121   | ERR   | 01/06/2016 23:05 | PRT1   | Bus Disconnected  |
| 122   | ERR   | 02/06/2016 05:37 | PRT1   | Bus Disconnected  |
| 123   | ERR   | 02/06/2016 06:39 | SYS    | FTP Connect Error |
| 124   | WARN  | 02/06/2016 06:40 | SYS    | PING Timeout      |
| 125   | ERR   | 02/06/2016 13:14 | PRT1   | Bus Disconnected  |
| 126   | ERR   | 02/06/2016 16:46 | PRT1   | Bus Disconnected  |
| 127   | ERR   | 02/06/2016 19:48 | PRT1   | Bus Disconnected  |
| 128   | ERR   | 02/06/2016 21:26 | PRT1   | Bus Disconnected  |

For events (Digital1 and Digital2 alarm state for example):

| INDEX | LEVEL | TIMESTAMP           | SOURCE | MESSAGE            |
|-------|-------|---------------------|--------|--------------------|
| 674   | INFO  | 25/06/2016 00:18:23 | SEC2   | INPUT 2 ALARM ON!  |
| 675   | INFO  | 25/06/2016 00:18:23 | SEC2   | INPUT 2 ALARM END! |
| 676   | INFO  | 25/06/2016 00:18:24 | SEC2   | INPUT 2 ALARM ON!  |
| 677   | INFO  | 25/06/2016 00:18:25 | SEC2   | INPUT 2 ALARM END! |
| 678   | INFO  | 25/06/2016 00:18:25 | SEC1   | INPUT 1 ALARM ON!  |
| 679   | INFO  | 25/06/2016 00:18:26 | SEC1   | INPUT 1 ALARM END! |
| 680   | INFO  | 25/06/2016 00:18:26 | SEC1   | INPUT 1 ALARM ON!  |
| 681   | INFO  | 25/06/2016 00:18:26 | SEC1   | INPUT 1 ALARM END! |
| 682   | INFO  | 25/06/2016 00:18:28 | SEC2   | INPUT 2 ALARM ON!  |
| 683   | INFO  | 25/06/2016 00:18:28 | SEC2   | INPUT 2 ALARM END! |

RTUNAME\_msgyyyyMMddhhmmss.csv
Where:
RTUNAME is the name of the RTU
yyyy is the year at the send file
MM is the mounth at the send file
dd is the day at the send file
hh are the hours at the send file
mm are the minutes at the send file
ss are the seconds at the send file

ZGPRS3TEST\_msg20160606000057.csv

The Event Logger filename is:

### 10.1.2. Sending event logger file to an EMAIL server

RTUs are compatible only with SMTP servers without encryption using the Ethernet or GPRS Always ON (PPP) connection.

Z-GPRS3 and Z-UMTS are compatible also with SMTPS server with SSL 3.0 encryption (for example GMAIL™) but only with GPRS connection NOT always ON (PPP must be off)

An example of SMTP server that works without encryprion is hMailServer for windows™, for more info: https://www.hmailserver.com/.

See the application note for installing and use hMailServer on a windows™ machine.

If the connection with the server is lost the RTU will accumulate the data and when the connection is returned all data is sent up to align to actual acquisition.

A tipical mail sent has a text in the body with the timestamp and the log file in attachment.

An event log can include also the diagnostic, for example:

| INDEX | LEVEL | TIMESTAMP        | SOURCE | MESSAGE           |
|-------|-------|------------------|--------|-------------------|
| 119   | ERR   | 01/06/2016 14:11 | SYS    | FTP Connect Error |
| 120   | ERR   | 01/06/2016 20:34 | PRT1   | Bus Disconnected  |
| 121   | ERR   | 01/06/2016 23:05 | PRT1   | Bus Disconnected  |
| 122   | ERR   | 02/06/2016 05:37 | PRT1   | Bus Disconnected  |
| 123   | ERR   | 02/06/2016 06:39 | SYS    | FTP Connect Error |
| 124   | WARN  | 02/06/2016 06:40 | SYS    | PING Timeout      |
| 125   | ERR   | 02/06/2016 13:14 | PRT1   | Bus Disconnected  |
| 126   | ERR   | 02/06/2016 16:46 | PRT1   | Bus Disconnected  |
| 127   | ERR   | 02/06/2016 19:48 | PRT1   | Bus Disconnected  |
| 128   | ERR   | 02/06/2016 21:26 | PRT1   | Bus Disconnected  |

For events (Digital1 and Digital2 alarm state for example):

| INDEX | LEVEL | TIMESTAMP           | SOURCE | MESSAGE            |
|-------|-------|---------------------|--------|--------------------|
| 674   | INFO  | 25/06/2016 00:18:23 | SEC2   | INPUT 2 ALARM ON!  |
| 675   | INFO  | 25/06/2016 00:18:23 | SEC2   | INPUT 2 ALARM END! |
| 676   | INFO  | 25/06/2016 00:18:24 | SEC2   | INPUT 2 ALARM ON!  |
| 677   | INFO  | 25/06/2016 00:18:25 | SEC2   | INPUT 2 ALARM END! |
| 678   | INFO  | 25/06/2016 00:18:25 | SEC1   | INPUT 1 ALARM ON!  |
| 679   | INFO  | 25/06/2016 00:18:26 | SEC1   | INPUT 1 ALARM END! |
| 680   | INFO  | 25/06/2016 00:18:26 | SEC1   | INPUT 1 ALARM ON!  |
| 681   | INFO  | 25/06/2016 00:18:26 | SEC1   | INPUT 1 ALARM END! |
| 682   | INFO  | 25/06/2016 00:18:28 | SEC2   | INPUT 2 ALARM ON!  |
| 683   | INFO  | 25/06/2016 00:18:28 | SEC2   | INPUT 2 ALARM END! |

The Event Logger filename is:

 $RTUNAME\_msgyyyyMMddhhmmss.csv$ 

Where:

RTUNAME is the name of the RTU

yyyy is the year at the send file

MM is the mounth at the send file

dd is the day at the send file

hh are the hours at the send file

mm are the minutes at the send file

ss are the seconds at the send file

So the filename for example can be:

ZGPRS3TEST\_msg20160606000057.csv

### 10.1.3. Saving event logger file to the microSD card

RTUs are compatible only with microSD card formatted in FAT32 (FAT16 filesystem is not recommended).

The event log files are stored into the /SYS directory.

The file name is different from the name that is sent to the FTP/EMAIL and is

Exxxxxxx.csv

Where xxxxxxx is an incremental number.

### 10.2. THE DATA LOGGER AND THE DATA LOGGER ON TRIGGER

The data logger works defining a Data acquisition time (sample time).

The minimum sample time is 1 minute.

The board can send data in two ways:

- 1) Notification
- 2) Report

The Notification sends data every sample time (minimum = 1 minute), the file will have only 1 row data. This row can be sent to SMS, EMAIL or HTTP POST.

The Report sends data every report time (for sample time = 1 minute and report time = 5 minutes then the report is made of 5 rows data).

The data logger on trigger works defining one or more event trigger actions, when the event trigger action is true a row acquisition is made.

If no event trigger actions are performed, no Notifications or Reports are sent.

### **NOTE:**

For http POST function only the Notification data can be used so only one row will be sent at a time.

### 10.2.1. Sending data logger file to a FTP server

Z-GPRS3 is compatible with ftp server configured into passive mode.

If the connection with the server is lost the RTU will accumulate the data and when the connection is returned all data is sent up to align to actual acquisition.

A typical Data logger file when is open with excel™ is:

| INDEX | TYPE | TIMESTAMP        | DIN1 | DIN2 | DIN3 | DIN4 | DOUT1 | DOUT2 | VBAT | POW | VAL1 | AVG1 | MIN1 | MAX1 |
|-------|------|------------------|------|------|------|------|-------|-------|------|-----|------|------|------|------|
| 51764 | LOG  | 05/06/2016 14:36 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |
| 51765 | LOG  | 05/06/2016 14:37 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 43   | 44   |
| 51766 | LOG  | 05/06/2016 14:38 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |
| 51767 | LOG  | 05/06/2016 14:39 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |
| 51768 | LOG  | 05/06/2016 14:40 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |

### Where:

INDEX is a progressive acquisition number.

LOG is a constant text.

TIMESTAMP is the Real Time Clock when the acquisition is made.

The others values are the TAG name and variables entered by the user in the SEAL configuration.

The Data Logger on Trigger file when is open with excel™ is:

| INDEX | TYPE  | TRIGGER | TIMESTAMP        | POW | VBAT | DIN1 | DIN2 | DIN3 | DIN4 | DOUT1 | DOUT2 | VAL1 | AVG1 | MIN1 | MAX1 |
|-------|-------|---------|------------------|-----|------|------|------|------|------|-------|-------|------|------|------|------|
| 1     | ASYNC | A       | 05/12/2016 16:11 | 1   | 1    | 1    | 0    | 0    | 0    | 0     | 0     | -4   | -3   | -5   | -3   |
| 2     | ASYNC | A       | 05/12/2016 16:11 | 1   | 1    | 1    | 0    | 0    | 0    | 0     | 0     | -5   | -3   | -5   | -3   |
| 3     | ASYNC | A       | 05/12/2016 16:11 | 1   | 1    | 1    | 0    | 0    | 0    | 0     | 0     | -5   | -3   | -5   | -3   |
| 4     | ASYNC | -B      | 05/12/2016 16:11 | 1   | 1    | 0    | 1    | 0    | 0    | 0     | 0     | -4   | -3   | -5   | -3   |
| 5     | ASYNC | -B      | 05/12/2016 16:11 | 1   | 1    | 0    | 1    | 0    | 0    | 0     | 0     | -4   | -3   | -5   | -3   |

| 6  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
|----|-------|----|------------------|---|---|---|---|---|---|---|---|----|----|----|----|
| 7  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
| 8  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
| 9  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
| 10 | ASYNC | AB | 05/12/2016 16:11 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |

A New column named Trigger is the Trigger Source that generated the log line.

For example the line indexed 9 is generated from the "B" trigger (DIN2 HIGH).

The line indexed 10 is generated from "A" and "B" trigger at the same time (DIN1 and DIN2 HIGH).

Note that the RTU directly calculates Average/Minimum/Maximum of an embedded analog input.

The Data Logger filename is:

RTUNAME\_logyyyyMMddhhmmss.csv

Where:

RTUNAME is the name of the RTU

yyyy is the year of the first row data in the file

MM is the mounth of the first row data in the file

dd is the day of the first row data in the file

hh are the hours of the first row data in the file

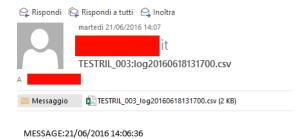
mm are the minutes of the first row data in the file

ss are the seconds of the first row data in the file

So the filename of the first example can be:

ZGPRS3TEST log20160605143600.csv

### 10.2.2. Sending data logger and data logger on trigger data to an E-MAIL server


RTUs are compatible only with SMTP servers without encryption using the Ethernet or GPRS/UMTS+ Always ON (PPP) connection.

Z-GPRS3 and Z-UMTS are compatible also with SMTPS server with SSL encryption (for example GMAIL™) but only with GPRS/UMTS+ connection NOT always ON (PPP must be off).

An example of SMTP server that works without encryprion is hMailServer for windows™, for more info: https://www.hmailserver.com/.

If the connection with the server is lost the RTU will accumulate the data and when the connection is returned all data is sent up to align to actual acquisition.

A typical mail sent has a text in the body with the timestamp and the log file in attachment:



A typical Data logger file when is open with excel™ is:

| INDEX | TYPE | TIMESTAMP        | DIN1 | DIN2 | DIN3 | DIN4 | DOUT1 | DOUT2 | VBAT | POW | VAL1 | AVG1 | MIN1 | MAX1 |
|-------|------|------------------|------|------|------|------|-------|-------|------|-----|------|------|------|------|
| 51764 | LOG  | 05/06/2016 14:36 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |
| 51765 | LOG  | 05/06/2016 14:37 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 43   | 44   |
| 51766 | LOG  | 05/06/2016 14:38 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |
| 51767 | LOG  | 05/06/2016 14:39 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |
| 51768 | LOG  | 05/06/2016 14:40 | 0    | 0    | 0    | 0    | 0     | 0     | 1    | 1   | 43   | 43   | 42   | 44   |

### Where:

INDEX is a progressive acquisition number.

LOG is a constant text.

TIMESTAMP is the Real Time Clock when the acquisition is made.

The others values are the TAG name and variables entered by the user in the SEAL configuration.

The Data Logger on Trigger file when is open with excel™ is:

| INDEX | TYPE  | TRIGGER | TIMESTAMP        | POW | VBAT | DIN1 | DIN2 | DIN3 | DIN4 | DOUT1 | DOUT2 | VAL1 | AVG1 | MIN1 | MAX1 |
|-------|-------|---------|------------------|-----|------|------|------|------|------|-------|-------|------|------|------|------|
| 1     | ASYNC | A       | 05/12/2016 16:11 | 1   | 1    | 1    | 0    | 0    | 0    | 0     | 0     | -4   | -3   | -5   | -3   |
| 2     | ASYNC | A       | 05/12/2016 16:11 | 1   | 1    | 1    | 0    | 0    | 0    | 0     | 0     | -5   | -3   | -5   | -3   |
| 3     | ASYNC | A       | 05/12/2016 16:11 | 1   | 1    | 1    | 0    | 0    | 0    | 0     | 0     | -5   | -3   | -5   | -3   |
| 4     | ASYNC | -B      | 05/12/2016 16:11 | 1   | 1    | 0    | 1    | 0    | 0    | 0     | 0     | -4   | -3   | -5   | -3   |
| 5     | ASYNC | -B      | 05/12/2016 16:11 | 1   | 1    | 0    | 1    | 0    | 0    | 0     | 0     | -4   | -3   | -5   | -3   |

| 6  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
|----|-------|----|------------------|---|---|---|---|---|---|---|---|----|----|----|----|
| 7  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
| 8  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
| 9  | ASYNC | -B | 05/12/2016 16:11 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -4 | -3 | -5 | -3 |
| 10 | ΔςνΝΟ | ΔΒ | 05/12/2016 16:11 | 1 | 1 | 1 | 1 | 0 | Ο | 0 | Ο | -4 | -3 | -5 | -3 |

A New column named Trigger is the Trigger Source that generated the log line.

For example the line indexed 9 is generated from the "B" trigger (DIN2 HIGH).

The line indexed 10 is generated from "A" and "B" trigger at the same time (DIN1 and DIN2 HIGH).

Note that the RTU directly calculates Average/Minimum/Maximum of an embedded analog input.

If the Data Logger file is sent to an ftp server or by email the filename is:

RTUNAME\_logyyyyMMddhhmmss.csv

Where:

RTUNAME is the name of the RTU

yyyy is the year of the first row data in the file

MM is the mounth of the first row data in the file

dd is the day of the first row data in the file

hh are the hours of the first row data in the file

mm are the minutes of the first row data in the file

ss are the seconds of the first row data in the file

So the filename of the example can be:

ZGPRS3TEST\_log20160605143600.csv

## 10.2.1. Sending data logger and data logger on trigger data to an HTTP server

Data logger Logs are sent using the Notification (connection is made every sample time).

The standard used for send data is the JSON.

For more info refers to the SENECA HTTP PROTOCOL user manual (must be required to <a href="mailto:service@seneca.it">service@seneca.it</a>).

## 10.2.1. Saving data logger data to the microSD card

Z-GPRS3 is compatible only with microSD card formatted in FAT32 (FAT16 filesystem is not recommended).

The log files are stored into the /LOG directory.

If the log report must be sent more frequently than daily, the RTU will create a directory for every days, for example:

**ROOT** 

--LOG

--20160618

--20160619

--20160620

The file name is different from the name that is sent to the FTP/EMAIL and is

Lxxxxxxxx.csv

Where xxxxxxx is an incremental number.

# 11. Sending data to an MQTT broker

Data can be sent in real time using JSON to a MQTT broker.

For more info about MQTT see:

## http://mqtt.org/

For more info about the MQTT implementation refers to the SENECA MQTT PROTOCOL user manual (must be required to <a href="mailto:service@seneca.it">service@seneca.it</a>).

## 12. HOW MANY LOGS IN A SINGLE MICROSD?

A microSD is pre-formatted FAT32 with allocation unit that depends from the constructor.

The number of logs data that can be stored in a microSD card depends from the microSD and the allocation unit size.

Using a classic microSD of 4GBytes formatted with a file allocation of 32768 bytes, the number of allocation are about:

4 000 000 000 / 32768 = about 122070 allocation units

Typically the RTU can save data to a microSD every 15 minutes, in this case the microSD will be full in:

122070 / 96 files for day = about 1272 days = about 3.5 years

Writing to a microSD every 1 minute, in this case the microSD will be full in:

122070 / 3600 files for day = about 34 days

If you need to increase the number of log that can be stored, you must format the microSD with the minimum allocation unit size.

In a dos shell "cmd" type:

format x: /FS:FAT32 /A:1024 /Q

Where "x" is the microSD drive letter

You will obtain an allocation unit of 1024 bytes so the number of allocation units is:

4 000 000 000 / 1024 = about 3906250 allocation units.

Saving a file every 15 minutes will create a file of about 10K so use 10 allocation unit:

3906250/(10 allocation units\*96 file for day) = about 4096 days => about 11 years

And saving every 1 minute:

3906250 / 3600 files for day = about 1085 days => about 3 years

The minimum unit size are typically:

512 Bytes for 2GB microSD

1024 Bytes for 4GB microSD

## 13. ACTIONS AND MESSAGES

The SEAL software configurator can manage Actions, and Messages.

#### **13.1. ACTIONS**

Actions are commands that must be executed from the RTU when an event is TRUE or FALSE.

Example of actions are: writing to a modbus register, Toggle the digital output 1, reset a totalizer etc...

## 13.2. TEXT AND AUDIO MESSAGES

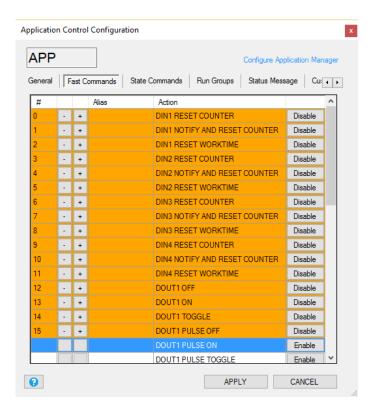
Messages are text that must be sent from the RTU when an event is TRUE or FALSE.

A Messages can be sent to: EMAILS, SMS, AUDIO CALL and HTTP POST

Example of messages are: sending a text alarm "Input 1 high ALARM!" when the analog input 1 is higher than 15 mA.

Audio messages are located into the /AUDIO directories, a preset of audio messages are loaded with seal but can be edited.

## 14. SENDING AUDIO (DTMF) COMMANDS TO Z-GPRS3 and Z-UMTS


Z-GPRS3 and Z-UMTS can receive audio calls for executing commands using DTMF code.

When a RTU is called the audio file in SD card:

/AUDIO/80.pcm

Now the RTU can execute the FAST COMMANDS from 0 to 15 simply typing the command number and then confirm with the "\*", use "#" for cancel.

The FAST COMMANDS are editable from SEAL in the APP icon -> Fast command, for example:



## 15. THE WEBSERVER

The Webserver is reachable from the Ethernet or from the Modem PPP connection.

There are 2 different webserver:

A Maintenance Webserver and a Custom Webserver.

#### **CAUTION!**

The webserver must be enabled from the SEAL software (default is webserver OFF).

#### 15.1. MAINTENANCE WEBSERVER

## NOTE

The webserver must be enabled from the SEAL software (default is webserver OFF).

The maintenance webserver can be used for maintenance and debug purposes, for accessing this webserver type in a browser (with default ip address):

## http://192.168.1.101/maintenance/index.html

192.168.1.101 must be replaced with the Ethernet or the Modem PPP IP address.

With the webserver is possible to download all the log files that are store in SD card:



By clicking on the file is possible to download or delete a single log file.

For debug you can see in real time all the external/internal TAGs values in the "Extended Variables"/ "Status" / "Digital IO" / "Analog IN" / "Counters" sections.

The last 16 Diagnostic Messages can be viewed in the "Diagnostic Messages" section.

The "Upload file" section can be used for sending a new configuration or a new firmware to the Z-GPRS3 RTU.

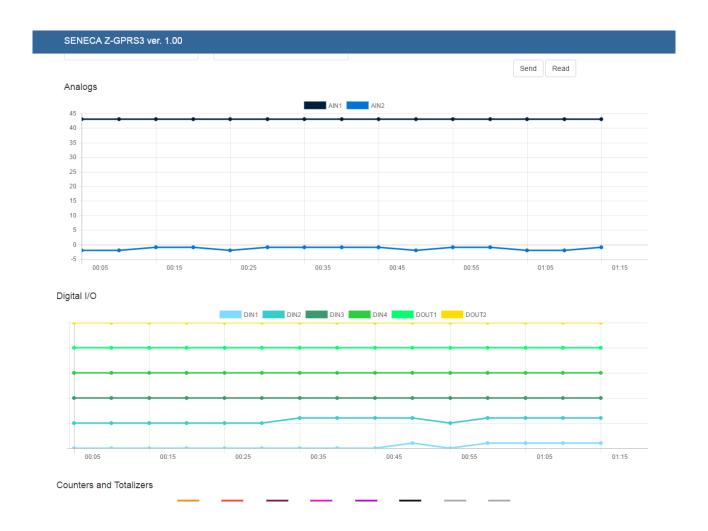
## 15.2. CUSTOM WEBSERVER

The custom webserver is located in the provided microSD card ( /WEB directory ).

For accessing this webserver type in a browser (with default ip address):

http://192.168.1.101/index.html

192.168.1.101 must be replaced with the Ethernet or the Modem PPP IP address.


Various Custom webserver can be downloaded from:

http://www.seneca.it/products/z-gprs3/



For example is possible to write directly to an external modbus tag entering in upper right corner a tag name and the new value.

An example of real time graph is also provided:



# 16. SEAL (SEneca Advanced Language)

Seal is a programming environment for the Seneca RTU, for more info refers to the SEAL help.

The last Seal software version can be downloaded from:

http://www.seneca.it/en/linee-di-prodotto/software/seal/

For more info install SEAL and go to the on line help.

#### **CAUTION!**

For a full support of SEAL the microSD card must be inserted!

## 17. FIRMWARE UPDATE

In order to include new functions, the system includes Z-GPRS3 firmware update options.

Various different update modes are available for firmware:

Via Webserver: Connect to the section "Upload File" for updating the firmware

**Via USB:** A complete update takes about 8 minutes. Z-GPRS3 / Z-Logger must be connected to a PC with SEAL software installed.

*Via microSD card:* A complete update takes about 20 seconds. A microSD adapter for PC (many mobile phones can also read/write microSD) is required.

**Via FTP Server:** When the RTU is not reachable directly, the firmware update can be made by sending a SMS or a HTTP command, then the update file is downloaded directly by the Z-GPRS3 RTU from a FTP server.

## 17.1. Firmware update by Webserver

- 1) Download and Install the last SEAL software from Seneca Website (the last firmware is located in C:\Program Files\Seneca\SeAL\devices).
- 2) Connect to the RTU webserver at address: http://ipaddress/maintenance/index.html where "ipaddress" is the PPP modem or Ethernet ip address.
- 3) Go to the "Upload File" section.



- 4) Under "Firmware Binary File" select the "fw.bin" file from the last firmware folder and then click "UPLOAD"
- 5) The RTU will reboot with the new firmware.

## 17.2. Firmware update by microSD card

Firmware can be updated via microSD card formatted with the FAT16 or FAT32 filesystem (purchased microSD cards are usually already formatted this way).

Proceed as follows to update firmware:

- 1. Copy the file called "fw.bin" containing the firmware to a microSD card, The file must be copied to the main microSD folder.
- 2. With the Z-GPRS3 RTU OFF, insert the microSD card in the slot
- 3. Turn ON the Z-GPRS3 RTU.
- 4. The SD/STS led starts to flash at 1 second intervals for about 20 seconds. The new firmware is written in flash memory during this phase.
- 5. When finished, the SD/STS led starts to flash fast
- 6. At this point, remove the microSD
- 7. The green PWR led starts to flash fast (several times a second); in this phase the module is copying firmware from flash to the microprocessor flash.
- 8. When finished, the module automatically turns off and back on

The firmware update can be checked:

-Connecting the module to SEAL software, the firmware version has changed.

#### **CAUTION!**

- -BEFORE UPDATING firmware, copy the current configuration.
- -Once the firmware is updated, the previous setup may be deleted so Z-GPRS3 must be reconfigured.

## 18. SEAL PROGRAM AND SEAL CONFIGURATION REMOTE UPDATE

## 18.1. SEAL PROGRAM AND SEAL CONFIGURATION UPDATE FROM WEBSERVER

You can update a SEAL program and or configuration from the Z-GPRS3 Webserver.

For update a new program and configuration follow the procedure:

- 1) In SEAL create a new program or change the parameters configuration
- 2) Go to Build -> Generate
- 3) Now Seal will create 3 files: .seal, .debug, .out
- 4) Rename the .out file to "setup.tag"
- 5) Connect to the webserver at address: http://ipaddress/maintenance/index.html

where "ipaddress" is the PPP modem or Ethernet ip address.

6) Go to the "Upload File" section.



- 7) Under "Configuration Tags File" select the "setup.tag" file and then click "UPLOAD"
- 8) The RTU will restart with the new SEAL Program/Configuration

#### **CAUTION!**

When use this feature with Remote RTU be sure that the connection parameters are correct before upload the new SEAL Program/Configuration or the RTU will be unreachable!

## 18.2. UPLOAD A PROJECT BACKUP TO THE RTU

You can create a backup file for the SEAL program (.seal file) for archive and upload it to the RTU.

For to do that follow the procedure:

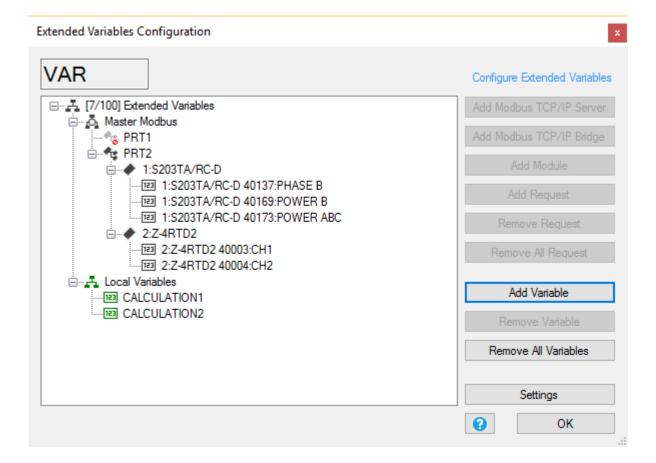
- Connect to the webserver at address:
   http://ipaddress/maintenance/index.html
   where "ipaddress" is the PPP modem or Ethernet ip address.
- 2) Go to the "Upload File" section.



- 3) Under "Configuration SEAL File" select the ".seal" file and then click "UPLOAD"
- 4) The RTU will store the .seal file to the SD card

#### **CAUTION!**

When a ".seal" file is uploaded the RTU will not change the actual program/configuration.


This operation is only for backup purpose, for changing the program/configuration you must upload the "setup.tag" file (see chapter 18.1)

## 19. MODBUS TCP-IP SERVER AND MODBUS RTU SLAVE

The RTUs can activate a Modbus TCP-IP Server and a Modbus RTU Slave (on serial ports) for accessing the Embedded and Modbus I/O.

The server accept up to 2 clients from Ethernet or Modem (PPP) connection.

The external variables addresses are placed from the SEAL compiler so, after compiling, the addresses can be showed:



| 277 | Notice | Build | Slave Address PHASE B:PRT2 1:S203TA/RC-D 40137:PHASE B Mapped to 41003     |
|-----|--------|-------|----------------------------------------------------------------------------|
| 278 | Notice | Build | Slave Address POWER B:PRT2 1:S203TA/RC-D 40169:POWER B Mapped to 41005     |
| 279 | Notice | Build | Slave Address POWER ABC:PRT2 1:S203TA/RC-D 40173:POWER ABC Mapped to 41007 |
| 280 | Notice | Build | Slave Address CH1:PRT2 2:Z-4RTD2 40003:CH1 Mapped to 41009                 |
| 281 | Notice | Build | Slave Address CH2:PRT2 2:Z-4RTD2 40004:CH2 Mapped to 41010                 |
| 282 | Notice | Build | Slave Address CALCULATION1:CALCULATION1 Mapped to 41011                    |
| 283 | Notice | Build | Slave Address CALCULATION2:CALCULATION2 Mapped to 41012                    |
| 284 | Info   | Build | Time elapsed 0:0:0.5                                                       |

# 19.1. MODBUS ADDRESSES TABLE (Z-GPRS3/Z-LOGGER3/Z-UMTS)

| ADDRRESS | OFFSET | TAG                        | REGISTER TYPE | RO/RW     | INFO                                                                                                                                                                                        |
|----------|--------|----------------------------|---------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40001    | 0      | MACHINE ID                 | UNSIGNED 16   | READ ONLY | INTERNAL CODE                                                                                                                                                                               |
| 40002    | 1      | FIRMWARE CODE              | UNSIGNED 16   | READ ONLY | INTERNAL CODE                                                                                                                                                                               |
| 40003    | 2      | FIRMWARE MAJOR<br>REVISION | UNSIGNED 16   | READ ONLY | (EXAMPLE 204 = 2.04)                                                                                                                                                                        |
| 40004    | 3      | FIRMWARE MINOR<br>REVISION | UNSIGNED 16   | READ ONLY | In decimal format  KMMBB  Where:  K=4= Bugfix Release  K=3= New Release  MM = Minor Revision  BB = Build  Example:  Value = 40110  4 = Bugfix Release  01 = Minor revision 1  10 = Build 10 |

| 40008 | 7  | DIGITAL INPUTS<br>AND SIGNALS | BIT                 | READ ONLY | Digital Inputs Bit 0 = INPUT1 VALUE Bit 1 = INPUT2 VALUE Bit 2 = INPUT3 VALUE Bit 3 = INPUT4 VALUE Bit 7 = EXTERNAL POWER Bit 8 = BATTERY GOOD |
|-------|----|-------------------------------|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 40009 | 8  | DIGITAL OUTPUTS               | BIT                 | READ ONLY | Bit 14 = DIGITAL OUTPUT 1<br>VALUE<br>Bit 15 = DIGITAL OUTPUT 2<br>VALUE                                                                       |
| 40015 | 14 | CLOCK YEAR                    | SIGNED 16 BITS      | READ ONLY | Year                                                                                                                                           |
| 40016 | 15 | CLOCK MOUNTH                  | UNSIGNED 8 BITS     | READ ONLY | Bit from 0 to 7 (LSB)                                                                                                                          |
| 40017 | 16 | CLOCK DAY                     | UNSIGNED 8 BITS     | READ ONLY | Bit from 0 to 7 (LSB)                                                                                                                          |
| 40017 | 16 | CLOCK HOURS                   | UNSIGNED 8 BITS     | READ ONLY | Bit from 8 to 15 (MSB)                                                                                                                         |
| 40018 | 17 | CLOCK MINUTES                 | UNSIGNED 8 BITS     | READ ONLY | Bit from 0 to 7 (LSB)                                                                                                                          |
| 40018 | 17 | CLOCK SECONDS                 | UNSIGNED 8 BITS     | READ ONLY | Bit from 8 to 15 (MSB)                                                                                                                         |
| 40023 | 22 | Totalizer value 1 LSW         | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                                                                                       |
| 40024 | 23 | Totalizer value 1<br>MSW      | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                                                                                       |
| 40025 | 24 | Counter value 1 LSW           | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                                                                                       |
| 40026 | 25 | Counter value 1 MSW           | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                                                                                       |
| 40039 | 38 | Worktime 1 LSW                | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Less significant 16 bits                                                                                                 |
| 40040 | 39 | Worktime 1 MSW                | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Most significant 16 bits                                                                                                 |
| 40049 | 48 | Totalizer value 2 LSW         | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                                                                                       |
| 40050 | 49 | Totalizer value 2<br>MSW      | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                                                                                       |
| 40051 | 50 | Counter value 2 LSW           | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                                                                                       |
| 40050 | 49 | Counter value 2 MSW           | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                                                                                       |
| 40065 | 64 | Worktime 2 LSW                | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Less significant 16 bits                                                                                                 |
| 40066 | 65 | Worktime 2 MSW                | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Most significant 16 bits                                                                                                 |
| 40075 | 74 | Totalizer value 3 LSW         | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                                                                                       |
| 40076 | 75 | Totalizer value 3<br>MSW      | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                                                                                       |
| 40077 | 76 | Counter value 3 LSW           | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                                                                                       |

| 40078              | 77               | Counter value 3 MSW        | UNSIGNED 16<br>BITS | READ ONLY  | Most significant 16 bits                                   |
|--------------------|------------------|----------------------------|---------------------|------------|------------------------------------------------------------|
| 40091              | 90               | Worktime 3 LSW             | UNSIGNED 16<br>BITS | READ ONLY  | Value in [Seconds]<br>Less significant 16 bits             |
| 40092              | 91               | Worktime 3 MSW             | UNSIGNED 16<br>BITS | READ ONLY  | Value in [Seconds]<br>Most significant 16 bits             |
| 40101              | 100              | Totalizer value 4 LSW      | UNSIGNED 16<br>BITS | READ ONLY  | Less significant 16 bits                                   |
| 40102              | 101              | Totalizer value 4<br>MSW   | UNSIGNED 16<br>BITS | READ ONLY  | Most significant 16 bits                                   |
| 40103              | 102              | Counter value 4 LSW        | UNSIGNED 16<br>BITS | READ ONLY  | Less significant 16 bits                                   |
| 40104              | 103              | Counter value 4 MSW        | UNSIGNED 16<br>BITS | READ ONLY  | Most significant 16 bits                                   |
| 40117              | 116              | Worktime 4 LSW             | UNSIGNED 16<br>BITS | READ ONLY  | Value in [Seconds]<br>Less significant 16 bits             |
| 40118              | 117              | Worktime 4 MSW             | UNSIGNED 16<br>BITS | READ ONLY  | Value in [Seconds]<br>Most significant 16 bits             |
| 40128              | 127              | Battery Voltage            | UNSIGNED 16<br>BITS | READ ONLY  | [mV]                                                       |
| 40130              | 129              | Analog input 1             | SIGNED 16 BITS      | READ ONLY  | Value in [mA] or [V]                                       |
| 40131              | 130              | Scaled Analog Input 1      | SIGNED 16 BITS      | READ ONLY  | Custom scaled value                                        |
| 40144              | 143              | Analog input 2             | SIGNED 16 BITS      | READ ONLY  | Value in [mA] or [V]                                       |
| 40145              | 144              | Scaled Analog Input 2      | SIGNED 16 BITS      | READ ONLY  | Custom scaled value                                        |
| 40158              | 157              | GSM Field                  | SIGNED 16 BITS      | READ ONLY  | Value in [dBm]                                             |
| 41003<br><br>41203 | 1002<br><br>1202 | External<br>Variables Tags | -                   | READ/WRITE | Use the compile output window for Tags address position    |
| 49001              | 9000             | COMMAND                    | UNSIGNED 16<br>BITS | READ/WRITE | Command Register<br>(see Table with supported<br>commands) |

# 19.2. MODBUS ADDRESSES TABLE (Z-UMTS HW2 from firmware 3.0.3)

| ADDRRESS | OFFSET | TAG                           | REGISTER TYPE | RO/RW     | INFO                                                                                                                                                                                        |
|----------|--------|-------------------------------|---------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40001    | 0      | MACHINE ID                    | UNSIGNED 16   | READ ONLY | INTERNAL CODE                                                                                                                                                                               |
| 40002    | 1      | FIRMWARE CODE                 | UNSIGNED 16   | READ ONLY | INTERNAL CODE                                                                                                                                                                               |
| 40003    | 2      | FIRMWARE MAJOR<br>REVISION    | UNSIGNED 16   | READ ONLY | (EXAMPLE 204 = 2.04)                                                                                                                                                                        |
| 40004    | 3      | FIRMWARE MINOR<br>REVISION    | UNSIGNED 16   | READ ONLY | In decimal format  KMMBB  Where:  K=4= Bugfix Release  K=3= New Release  MM = Minor Revision  BB = Build  Example:  Value = 40110  4 = Bugfix Release  01 = Minor revision 1  10 = Build 10 |
| 40008    | 7      | DIGITAL INPUTS<br>AND SIGNALS | BIT           | READ ONLY | Digital Inputs Bit 0 = INPUT1 VALUE Bit 1 = INPUT2 VALUE Bit 2 = INPUT3 VALUE Bit 3 = INPUT4 VALUE Bit 7 = EXTERNAL POWER Bit 8 = BATTERY GOOD                                              |

| 40009 | 8  | DIGITAL OUTPUTS          | ВІТ                 | READ ONLY | Bit 14 = DIGITAL OUTPUT 1<br>VALUE<br>Bit 15 = DIGITAL OUTPUT 2<br>VALUE |
|-------|----|--------------------------|---------------------|-----------|--------------------------------------------------------------------------|
| 40015 | 14 | CLOCK YEAR               | SIGNED 16 BITS      | READ ONLY | Year                                                                     |
| 40016 | 15 | CLOCK MOUNTH             | UNSIGNED 8 BITS     | READ ONLY | Bit from 0 to 7 (LSB)                                                    |
| 40017 | 16 | CLOCK DAY                | UNSIGNED 8 BITS     | READ ONLY | Bit from 0 to 7 (LSB)                                                    |
| 40017 | 16 | CLOCK HOURS              | UNSIGNED 8 BITS     | READ ONLY | Bit from 8 to 15 (MSB)                                                   |
| 40018 | 17 | CLOCK MINUTES            | UNSIGNED 8 BITS     | READ ONLY | Bit from 0 to 7 (LSB)                                                    |
| 40018 | 17 | CLOCK SECONDS            | UNSIGNED 8 BITS     | READ ONLY | Bit from 8 to 15 (MSB)                                                   |
| 40023 | 22 | Totalizer value 1 LSW    | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                 |
| 40024 | 23 | Totalizer value 1<br>MSW | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                 |
| 40025 | 24 | Counter value 1 LSW      | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                 |
| 40026 | 25 | Counter value 1 MSW      | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                 |
| 40039 | 38 | Worktime 1 LSW           | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Less significant 16 bits                           |
| 40040 | 39 | Worktime 1 MSW           | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Most significant 16 bits                           |
| 40049 | 48 | Totalizer value 2 LSW    | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                 |
| 40050 | 49 | Totalizer value 2<br>MSW | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                 |
| 40051 | 50 | Counter value 2 LSW      | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                 |
| 40050 | 49 | Counter value 2 MSW      | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                 |
| 40065 | 64 | Worktime 2 LSW           | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Less significant 16 bits                           |
| 40066 | 65 | Worktime 2 MSW           | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Most significant 16 bits                           |
| 40075 | 74 | Totalizer value 3 LSW    | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                 |
| 40076 | 75 | Totalizer value 3<br>MSW | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                 |
| 40077 | 76 | Counter value 3 LSW      | UNSIGNED 16<br>BITS | READ ONLY | Less significant 16 bits                                                 |
| 40078 | 77 | Counter value 3 MSW      | UNSIGNED 16<br>BITS | READ ONLY | Most significant 16 bits                                                 |
| 40091 | 90 | Worktime 3 LSW           | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Less significant 16 bits                           |
| 40092 | 91 | Worktime 3 MSW           | UNSIGNED 16<br>BITS | READ ONLY | Value in [Seconds]<br>Most significant 16 bits                           |

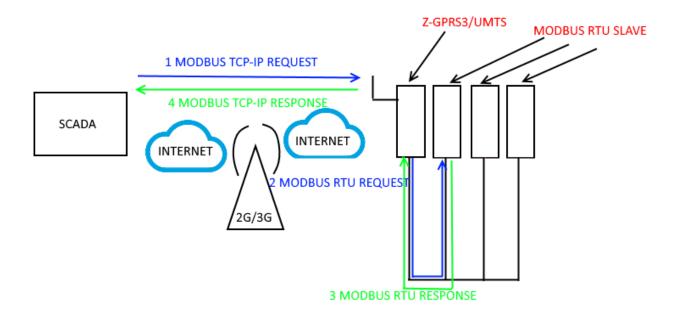
| 40101           | 100         | Totalizer value 4 LSW      | UNSIGNED 16<br>BITS                     | READ ONLY  | Less significant 16 bits                                   |
|-----------------|-------------|----------------------------|-----------------------------------------|------------|------------------------------------------------------------|
| 40102           | 101         | Totalizer value 4<br>MSW   | UNSIGNED 16<br>BITS                     | READ ONLY  | Most significant 16 bits                                   |
| 40103           | 102         | Counter value 4 LSW        | UNSIGNED 16<br>BITS                     | READ ONLY  | Less significant 16 bits                                   |
| 40104           | 103         | Counter value 4 MSW        | UNSIGNED 16<br>BITS                     | READ ONLY  | Most significant 16 bits                                   |
| 40117           | 116         | Worktime 4 LSW             | UNSIGNED 16<br>BITS                     | READ ONLY  | Value in [Seconds]<br>Less significant 16 bits             |
| 40118           | 117         | Worktime 4 MSW             | UNSIGNED 16<br>BITS                     | READ ONLY  | Value in [Seconds]<br>Most significant 16 bits             |
| 40128           | 127         | Battery Voltage            | UNSIGNED 16<br>BITS                     | READ ONLY  | [mV]                                                       |
| 40130           | 129         | Analog input 1             | SIGNED 16 BITS                          | READ ONLY  | Value in [mA] or [V]                                       |
| 40131           | 130         | Scaled Analog Input 1      | SIGNED 16 BITS                          | READ ONLY  | Custom scaled value                                        |
| 40144           | 143         | Analog input 2             | SIGNED 16 BITS                          | READ ONLY  | Value in [mA] or [V]                                       |
| 40145           | 144         | Scaled Analog Input 2      | SIGNED 16 BITS                          | READ ONLY  | Custom scaled value                                        |
| 40157           | 156         | GSM Field                  | SIGNED 16 BITS                          | READ ONLY  | Value in [dBm]                                             |
| 40215           | 214         | GNSS Flags                 | UNSIGNED 16<br>BITS                     | READ ONLY  | Flags for GNSS                                             |
| 40216           | 215         | SNR/GNSS Satellites        | UNSIGNED 8 BITS<br>+<br>UNSIGNED 8 BITS | READ ONLY  | SNR (MSB) / Number of satellites(LSB)                      |
| 40217-<br>40218 | 216-<br>217 | LATITUDE LSW               | FLOAT 32 (LSW)                          | READ ONLY  | Latitude (LSW)                                             |
| 40219-<br>40220 | 218-<br>219 | LATITUDE MSW               | FLOAT 32 (MSW)                          | READ ONLY  | Latitude (MSW)                                             |
| 40221-<br>40222 | 220-<br>221 | LONGITUDE LSW              | FLOAT 32 (LSW)                          | READ ONLY  | Longitude (LSW)                                            |
| 40223-<br>40224 | 222-<br>223 | LONGITUDE MSW              | FLOAT 32 (MSW)                          | READ ONLY  | Longitude (MSW)                                            |
| 40225-<br>40226 | 224-<br>225 | SPEED LSW                  | FLOAT 32 (LSW)                          | READ ONLY  | SPEED LSW                                                  |
| 40227-<br>40228 | 226-<br>227 | SPEED MSW                  | FLOAT 32 (MSW)                          | READ ONLY  | SPEED MSW                                                  |
| 40229-<br>40230 | 228-<br>229 | DISTANCE LSW               | FLOAT 32 (LSW)                          | READ ONLY  | DISTANCE FROM CENTER (LSW)                                 |
| 40231-<br>40232 | 230-<br>231 | DISTANCE MSW               | FLOAT 32 (MSW)                          | READ ONLY  | DISTANCE FROM CENTER (MSW)                                 |
| 41003           | 1002        | External<br>Variables Tags | -                                       | READ/WRITE | Use the compile output window for Tags address position    |
| 41203           | 1202        |                            |                                         |            |                                                            |
| 49001           | 9000        | COMMAND                    | UNSIGNED 16<br>BITS                     | READ/WRITE | Command Register<br>(see Table with supported<br>commands) |

## 19.3. SUPPORTED COMMANDS FROM MODBUS

If you have enabled the Modbus TCP-IP server by Ethernet connection or the Modbus Slave RTU from a serial port you are able to send commands to RTUs.

The register COMMAND is at holding address 49001 (holding register 9000)

| COMMAND                                                          | VALUE (decimal) |
|------------------------------------------------------------------|-----------------|
| RESET RTU                                                        | 1               |
| UNMOUNT SD CARD                                                  | 7               |
| STOP DATALOGGER                                                  | 18              |
| START DATALOGGER                                                 | 17              |
| COPY ALL LOGS FROM INTERNAL FLASH TO microSD  CARD               | 19              |
| RESET LOG SESSION                                                | 20              |
| ERASE ALL LOG FROM INTERNAL FLASH                                | 16              |
| FORCE MODEM RESET                                                | 65              |
| STOP MODBUS TCP-IP AND MODBUS RTU LOG                            | 98              |
| START MODBUS TCP-IP AND MODBUS RTU LOG                           | 97              |
| DOWNLOAD AND UPDATE FIRMWARE FROM REMOTE  FTP SERVER             | 112             |
| DOWNLOAD AND UPDATE FIRMWARE AND SETUP<br>FROM REMOTE FTP SERVER | 113             |
| DOWNLOAD AND UPDATE SETUP FROM REMOTE FTP  SERVER                | 114             |
| DOWNLOAD AND UPDATE PHONEBOOK FROM FTP  SERVER                   | 83              |
| UPDATE FIRMWARE FROM SD                                          | 116             |
| UPDATE SETUP FROM SD                                             | 117             |
| UPDATE PHONEBOOK FROM SD                                         | 118             |
| EXECUTE RING COMMAND                                             | 33              |
| EXECUTE FAST COMMAND 0                                           | 48              |


| EXECUTE FAST COMMAND 1  | 49                                  |
|-------------------------|-------------------------------------|
|                         |                                     |
| EXECUTE FAST COMMAND 2  | 50                                  |
| EXECUTE FAST COMMAND 3  | 51                                  |
| EXECUTE FAST COMMAND 4  | 52                                  |
| EXECUTE FAST COMMAND 5  | 53                                  |
| EXECUTE FAST COMMAND 6  | 54                                  |
| EXECUTE FAST COMMAND 7  | 55                                  |
| EXECUTE FAST COMMAND 8  | 56                                  |
| EXECUTE FAST COMMAND 9  | 57                                  |
| EXECUTE FAST COMMAND 10 | 58                                  |
| EXECUTE FAST COMMAND 11 | 59                                  |
| EXECUTE FAST COMMAND 12 | 60                                  |
| EXECUTE FAST COMMAND 13 | 61                                  |
| EXECUTE FAST COMMAND 14 | 62                                  |
| EXECUTE FAST COMMAND 15 | 63                                  |
| CLOSE DIGITAL OUTPUT1   | Write with Write Multiple Register: |
|                         | write 32 in register 49001          |
|                         | write 32 in register 49002          |
|                         | write 512 in register 49003         |
| OPEN DIGITAL OUTPUT1    | Write with Write Multiple Register: |
|                         | write 32 in register 49001          |
|                         | write 16 in register 49002          |
|                         | write 512 in register 49003         |
| CLOSE DIGITAL OUTPUT2   | Write with Write Multiple Register: |
|                         | write 32 in register 49001          |
|                         | write 8192 in register 49002        |
|                         | write 512 in register 49003         |
| OPEN DIGITAL OUTPUT2    | write 32 in register 49001          |
|                         |                                     |

| write 4096 in register 49002 |
|------------------------------|
| write 512 in register 49003  |

## 20. MODBUS TCP-IP TO RTU PASSTHROUGH

The devices can be used for convert in real time the protocol Modbus TCP-IP to Modbus RTU from Ethernet or 2G/3G connection.

For example is possible to connect a scada in Modbus TCP-IP to directly acquire the Modbus I/O slaves Modbus RTU:



- 1 The Scada makes a Modbus TCP-IP Request
- 2 The Z-GPRS3/Z-UMTS Converts the Modbus TCP-IP Request to the Modbus RTU Slave
- 3 The Slave Modbus RTU makes the response
- 4 The Z-GPRS3/Z-UMTS Converts the Modbus RTU Response to the Modbus TCP-IP Scada

# 21. DYNAMIC DNS (Z-GPRS3 and Z-UMTS only)

Dynamic DNS (DDNS or DynDNS) is a method of automatically link the name server with a dynamic IP.

For example is possible to access the Z-GPRS3/Z-UMTS webserver with:

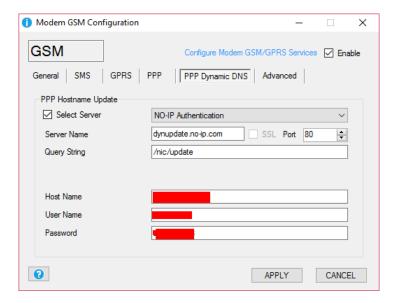
#### http://senecazumts.ddns.net/index.html

The IP can change but the name is always the same.

Also the Z-UMTS/Z-GPRS3 Modbus TCP-IP server can reached, for example configuring in the scada:

Station name: senecazumts.ddns.net

Port: 502


Z-UMTS/Z-GPRS3 supports the following DDNS:

NoIP

DDNS.org

DDNS.it

A configuration example is (note that PPP must be configured):



# 22. SUPPORTED SMS COMMANDS (Z-GPRS3 and Z-UMTS only)

## 22.1. List of Supported Sms Commands

Z-GPRS3 lets you run commands if the SMS sender number is enabled.

## Command list:

| SMS COMMANDS FOR DIGITAL INPUTS/COUNTERS/TOTALIZERS |                                 |  |  |  |  |
|-----------------------------------------------------|---------------------------------|--|--|--|--|
| GET DIN                                             | Status from all counters        |  |  |  |  |
| GET DINn                                            | All nth input counter status    |  |  |  |  |
| GET DINn.TOT                                        | All nth input totalizers status |  |  |  |  |
| GET DINn.CNT                                        | All nth input counters status   |  |  |  |  |
| RESET DIN                                           | Reset all counters              |  |  |  |  |
| RESET CNTn                                          | Reset the nth counter           |  |  |  |  |
|                                                     |                                 |  |  |  |  |
|                                                     |                                 |  |  |  |  |
|                                                     |                                 |  |  |  |  |

| SMS COMMANDS FOR DIGITAL INPUTS/COUNTERS/TOTALIZERS |                                 |  |
|-----------------------------------------------------|---------------------------------|--|
| GET DIN                                             | Status from all counters        |  |
| GET DINn                                            | All nth input counter status    |  |
| GET DINn.TOT                                        | All nth input totalizers status |  |
| GET DINn.CNT                                        | All nth input counters status   |  |
| RESET DIN                                           | Reset all counters              |  |
| RESET CNTn                                          | Reset the nth counter           |  |
|                                                     |                                 |  |
|                                                     |                                 |  |

| SMS COMMANDS FOR READ/WRITE EXTENDED VARIABLES |  |
|------------------------------------------------|--|
|                                                |  |

| GET TAG <variable_label></variable_label>                 | Returns by SMS the value of the extended variable named <variable_label>  For example:  GET TAG PIPPO  Returns the PIPPO extended variable value</variable_label> |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SET TAG <variable_label> <value></value></variable_label> | Write <value> to the external variable named <variable_label>  For example:  SET TAG PIPPO 345  Write 345 to the PIPPO extended variable</variable_label></value> |
|                                                           |                                                                                                                                                                   |

| ns the nth digital output<br>es the nth digital output |
|--------------------------------------------------------|
| es the nth digital output                              |
| 3 1                                                    |
| gle the nth digital output                             |
| ns the nth timed output                                |
| _                                                      |

| SMS COMMANDS FOR ADDRESS BOOKS |                                                     |
|--------------------------------|-----------------------------------------------------|
| SET PHONE +nnnnnnn             | Add number +nnnnnn to address book as administrator |

## **USER MANUAL – Z-GPRS3, Z-UMTS, Z-LOGGER3**

| RESET PHONE +nnnnnnn    | Remove number +nnnnnn from the address    |
|-------------------------|-------------------------------------------|
|                         | book                                      |
|                         |                                           |
| SET EMAIL nnn@nnn.nnn   | Add email nnn@nnn.nnn to address book as  |
|                         | administrator                             |
|                         |                                           |
| RESET EMAIL nnn@nnn.nnn | Delete email nnn@nnn.nnn from the address |
|                         | book                                      |
|                         |                                           |
|                         |                                           |
|                         |                                           |
|                         |                                           |
|                         |                                           |

| VARIOUS SMS COMMANDS                        |                                                                                                                                                                                                                                                   |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CREDIT                                      | Returns residual credit (for top-up SIM CARD only)                                                                                                                                                                                                |  |
| STATUS                                      | Returns the variables set by setup software. All available variables can be included. If the SMS text exceeds 160 characters, it will be truncated (three dots "" at the end of the SMS ).                                                        |  |
| SET GSM.APN apn_name user password          | Set the APN with the APN name, user and password. For example, set vodafone APN that does not require user name and password:  SET GSM.APN web.omnitel.it                                                                                         |  |
| SET GSM.FTP path name_ip port user password | Set FTP connection settings:  path the FTP server folder where files are sent  name_ip IP address or FTP server name  port FTP server gateway  user FTP server login user name  password FTP server login password  for example:                  |  |
|                                             | SET /prova/ 192.168.180.33 21 pippo pluto                                                                                                                                                                                                         |  |
| SET GSM.SMTP name_ip port user password     | set SMTP server connection settings to send emails  name_ip IP address or FTP server name  port smtp server gateway  user FTP server login user name  password smtp server login password  for example:  SET GSM.SMTP out.alice.it 25 pippo pluto |  |
| GET AIN                                     | Returns the two analog input values                                                                                                                                                                                                               |  |
| EMAIL TEST                                  | Forces an email sent with an attachment to the first administrator in the email address book                                                                                                                                                      |  |

| FTP TEST     | Forces a text file sent to the currently set ftp server                                                                                                                                                                                                                    |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EMAIL TAG    | Sends the value indicated by "TAG" to the first email contact                                                                                                                                                                                                              |  |
|              | EMAIL AIN sends an email with the value of the 2 analogs                                                                                                                                                                                                                   |  |
|              | EMAIL AIN1 sends an email with the value of the analog 1                                                                                                                                                                                                                   |  |
|              | EMAIL AIN2 sends an email with the value of the analog 2                                                                                                                                                                                                                   |  |
|              | EMAIL DIN sends an email with the value of the digital inputs                                                                                                                                                                                                              |  |
|              | EMAIL DIN1 sends an email with the value of the digital input 1                                                                                                                                                                                                            |  |
|              | EMAIL DIN2 sends an email with the value of the digital input 2                                                                                                                                                                                                            |  |
|              | EMAIL DIN3 sends an email with the value of the digital input 3                                                                                                                                                                                                            |  |
|              | EMAIL DIN4 sends an email with the value of the digital input 4                                                                                                                                                                                                            |  |
|              | EMAIL TEMP sends an email with the internal temperature sensor v                                                                                                                                                                                                           |  |
| EMAIL SYSLOG | Sends the last week syslog.csv log file on microSD via email (first administrator address in the address book)                                                                                                                                                             |  |
| FTP SYSLOG   | Sends the last week syslog.csv log file in the microSD via FTP                                                                                                                                                                                                             |  |
| UPLOAD LOG   | Create a dump of the actual internal flash log into the microSD logdump.csv, then Sends this file to the actual upload channel (E-MAIL or FTP).                                                                                                                            |  |
| DOWNLOAD FW  | The RTU will download from the FTP download folder the "RTUNAME_fwupdt.bin" firmware file (where RTUNAME is the name inserted in the "Cloud" SEAL section) Then (if the release il different from the installed) a firmware update is done.  for example:    Datalogger005 |  |
|              | The firmware file must be:                                                                                                                                                                                                                                                 |  |
|              | "Datalogger005_fwupdt.bin"                                                                                                                                                                                                                                                 |  |
|              | Note that if in the "Cloud" SEAL section you have flagged one of the followed flags:                                                                                                                                                                                       |  |

|                   | Add IMEI to Folders Add MAC to Folders Add RTU Name to Folders                                                                                                                                             |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | The firmware file must be only "fwupdt.bin"                                                                                                                                                                |  |
| DOWNLOAD SETUP    | The RTU will download from the FTP download folder the "RTUNAME_ setup.tag" setup file (where RTUNAME is the name inserted in the "Cloud" SEAL section) Then a configuration update is done.  For example: |  |
|                   | RTU Name Datalogger005                                                                                                                                                                                     |  |
|                   | The setup file must be:                                                                                                                                                                                    |  |
|                   | "Datalogger005_setup.tag"                                                                                                                                                                                  |  |
|                   | Note that if in the "Cloud" SEAL section you have flagged one of the followed flags:  Add IMEI to Folders Add MAC to Folders Add RTU Name to Folders                                                       |  |
|                   |                                                                                                                                                                                                            |  |
|                   | The setup file name must be only "setup.tag"                                                                                                                                                               |  |
| DOWNLOAD FW-SETUP | The RTU will download from the FTP download folder the firmware AND the setup file. Then (if the release is different from the installed) the firmware and the configuration are updated.                  |  |
|                   | The firmware name must be:                                                                                                                                                                                 |  |
|                   | "fwupdt.bin"                                                                                                                                                                                               |  |
|                   | The setup name must be:                                                                                                                                                                                    |  |
|                   | "fwupdt.tag"                                                                                                                                                                                               |  |
| DOWNLOAD DATA     | The RTU will download from the FTP download folder the "data.bin" with the extended ring action phonebook (up to 1000 users). Then the extended phonebook is updated.                                      |  |
| RESET             | Reset the RTU                                                                                                                                                                                              |  |
| NET               | RTU will send actual Ethernet and modem PPP IP address                                                                                                                                                     |  |

#### NOTE

If the command is not recognized by Z-GPRS3, an error SMS will be sent:

#### "COMMAND NOT RECOGNIZED"

You can configure Z-GPRS3 to send a confirmation (SMS or ring) when the command is successfully completed.

#### **CAUTION!**

When a command is successfully completed, a ring can only be generate when a voice SIM is used (data SIM do not permit voice call service).

## 23. EMERGENCY MODE

From firmware 1.2.1 Z-UMTS and 2.4.2 Z-GPRS3/Z-LOGGER3 it's possible to disable the SEAL program execution putting ALL dip switches to ON at boot-up.

This emergency mode is useful if a SEAL program does not allow to connect to SEAL (for example because the board will reboot continuously).

In emegency mode the SEAL program is not executed and the datalogger is stopped.

For enter in the emergency mode follow the steps:

- 1) Power Down the Board
- 2) Put ALL the dip switches to "ON"
- 3) Power ON the Board
- 4) PWR led will flash until you exit from the emergency mode
- 5) Now you can connect to SEAL and send a new program

For exit from the emergency mode:

- 1) Power Down the Board
- 2) Put ALL the dip switches to "OFF"
- 3) Power ON the Board
- 4) Now the SEAL program is in execution

## 24. Z-GPRS3 POWER ESTIMATE FOR USE WITH SOLAR PANELS

The following table is obtained using a Modbus TCP-IP client connection with the Modbus TCP-IP Z-GPRS3 server using the GPRS connection.

Test condition:

- -internet connection is always ON
- -Outputs OFF
- -No Ethernet connected
- -No 12VDC (Screw 1) connected

| VOLTAGE | GSM SIGNAL    | MODBUS REQUEST<br>EVERY | MODBUS REGISTERS<br>REQUEST | TYPICAL AVERAGE POWER |
|---------|---------------|-------------------------|-----------------------------|-----------------------|
| 12V DC  | -56 dBm (7/7) | 60 seconds              | 10                          | 1,49 W                |
| 12V DC  | -86 dBm (3/7) | 60 seconds              | 10                          | 1,5 W                 |
| 12V DC  | -86 dBm (3/7) | Continuous              | 10                          | 1,9 W                 |

## 25. TROUBLESHOOTING

| PROBLEM                                    | SOLUTION                                                   |
|--------------------------------------------|------------------------------------------------------------|
| Sending the SMS command:                   | -Make sure the set APN corresponds to the mobile service   |
|                                            | provider's and whether access requires authorisation. See: |
| email test                                 | http://wiki.apnchanger.org/Main Page                       |
| no email reaches the administrator's email | nttp.// wiki.aphendinger.org/ wain_i age                   |
| address                                    | -Make sure the GSM signal is over 2/7                      |
|                                            | -The email ended up in SPAM                                |
|                                            | -The SMTP server supports SSL protection and the gateway   |
|                                            | was not correctly set                                      |
| Using the configuration software in the    | If you send Log via Ethernet, Seneca recommended to        |
| "Test configuration" section when you      | use an owner SMTP server.                                  |
| launch the command:                        | -The email is in the SPAM directory                        |
| TEST E-MAIL COMMAND                        | -The SMTP server supports only SSL security, in the        |
|                                            | ethernet port or Modem PPP connection you can not          |
|                                            | enable SSL protection                                      |
| no e-mail arrives at the administrator e-  |                                                            |
| mail address                               |                                                            |

| Sending the SMS command:                     | -The FTP server folder does not exist. Create the folder on   |
|----------------------------------------------|---------------------------------------------------------------|
|                                              | the ftp server first.                                         |
|                                              | ·                                                             |
| 6                                            | -Make sure the ftp server IP address/name are correct         |
| ftp test                                     | NA-la sura the fire consulation and a sura description        |
|                                              | -Make sure the ftp server login user name/password are        |
|                                              | correct                                                       |
| no ftp file reaches the set ftp server       |                                                               |
|                                              |                                                               |
| Using the configuration software in the      | -The folder on the FTP server on which you created the        |
| "Test configuration" section when you        | file does not exist, first create the folder in the ftp       |
| launch the command                           | server                                                        |
|                                              | -Check the correctness of the IP / name of the FTP            |
| TEST FTP                                     | server                                                        |
|                                              | -Make sure that the username / password to access the         |
|                                              | ftp server are correct                                        |
| no ftp file arrives in the configured ftp    |                                                               |
| server                                       |                                                               |
| Server                                       |                                                               |
| The GSM signal is always 0/7 and the GSM led | -The inserted SIM is not recognised. Clean or replace the SIM |
| continues to flash fast                      |                                                               |
|                                              | -The SIM PIN is enabled. Insert the SIM in a mobile phone and |
|                                              | disable the PIN or enable it and insert the PIN code in the   |
|                                              | setup software                                                |
| The GSM signal is too low                    | -Wait at least 10 minutes from turning on the device before   |
| The daw signaria too low                     | reading the GSM value                                         |
|                                              | reduing the GSW value                                         |
|                                              | -Try using another mobile service provider's SIM              |
|                                              | -Move the Z-GPRS3 installation                                |
|                                              |                                                               |
|                                              | -Use an optional external antenna: for further information,   |
|                                              | contact Seneca or visit the Z-GPRS3 section at                |
|                                              | www.seneca.it.                                                |
| Decidual graditie ant continue to CIA        | Check the mothed used to receive residual and the control     |
| Residual credit is not sent for the SIM      | -Check the method used to receive residual credit from the    |
|                                              | mobile service provider (ring or SMS, SMS request text).      |
|                                              | -The SIM is not top-up but subscription                       |
| Z-GPRS3 or Z-UMTS worked correctly for a few | -No SIM credit. Top-up the SIM card.                          |
| days/months but stopped sending SMS and      |                                                               |
| logs.                                        | -The SIM card expired, replace the SIM card or contact your   |
|                                              | mobile phone provider.                                        |
|                                              |                                                               |
| Vou got the "NTD over ""                     | The clock cynchronization is estimated via other at this      |
| You get the "NTP error"                      | The clock synchronization is activated, via ethernet this     |
|                                              | is done via NTP (network time protocol), but you can          |
|                                              | not contact the NTP server:                                   |
|                                              |                                                               |
|                                              |                                                               |
|                                              | 1                                                             |

|                                                                                                            | -Make sure that the UDP port 123 is open |
|------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                            | -Check the configured NTP server address |
| The device is unable to send emails or ftp                                                                 | -Try to change Router/Modem              |
| files on the Internet through the Ethernet port but a PC connected to the same LAN can send emails and ftp | -Update the Router/Modem Firmware        |
| files.                                                                                                     | -Keep open on the router the ports:      |
| ines.                                                                                                      | UDP/TCP 25                               |
|                                                                                                            | UDP/TCP 21                               |
|                                                                                                            | UDP 123                                  |